10 research outputs found
Development and application of genetic ancestry reconstruction methods to study diversity of patient-derived models in the NCI PDXNet Consortium
Precision medicine holds great promise for improving cancer outcomes. Yet, there are large inequities in the demographics of patients from whom genomic data and models, including patient-derived xenografts (PDX), are developed and for whom treatments are optimized. In this study, we developed a genetic ancestry pipeline for the Cancer Genomics Cloud, which we used to assess the diversity of models currently available in the National Cancer Institute-supported PDX Development and Trial Centers Research Network (PDXNet). We showed that there is an under-representation of models derived from patients of non-European ancestry, consistent with other cancer model resources. We discussed these findings in the context of disparities in cancer incidence and outcomes among demographic groups in the US, as well as power analyses for biomarker discovery, to highlight the immediate need for developing models from minority populations to address cancer health equity in precision medicine. Our analyses identified key priority disparity-associated cancer types for which new models should be developed.SignificanceUnderstanding whether and how tumor genetic factors drive differences in outcomes among U.S. minority groups is critical to addressing cancer health disparities. Our findings suggest that many additional models will be necessary to understand the genome-driven sources of these disparities
Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidatesfor targeted treatment
Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors
Recommended from our members
Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidatesfor targeted treatment.
Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs\u27 recapitulation of human tumors
A Pan-Cancer Patient-Derived Xenograft Histology Image Repository with Genomic and Pathologic Annotations Enables Deep Learning Analysis
Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response. In this study, we developed an extensive, pan-cancer repository of \u3e1,000 PDX and paired parental tumor H&E images. These images, curated from the PDX Development and Trial Centers Research Network Consortium, had a range of associated genomic and transcriptomic data, clinical metadata, pathologic assessments of cell composition, and, in several cases, detailed pathologic annotations of neoplastic, stromal, and necrotic regions. The amenability of these images to deep learning was highlighted through three applications: (i) development of a classifier for neoplastic, stromal, and necrotic regions; (ii) development of a predictor of xenograft-transplant lymphoproliferative disorder; and (iii) application of a published predictor of microsatellite instability. Together, this PDX Development and Trial Centers Research Network image repository provides a valuable resource for controlled digital pathology analysis, both for the evaluation of technical issues and for the development of computational image–based methods that make clinical predictions based on PDX treatment studies. Significance: A pan-cancer repository of \u3e1,000 patient-derived xenograft hematoxylin and eosin–stained images will facilitate cancer biology investigations through histopathologic analysis and contributes important model system data that expand existing human histology repositories
Recommended from our members
Systematic Establishment of Robustness and Standards in Patient-Derived Xenograft Experiments and Analysis.
Patient-derived xenografts (PDX) are tumor-in-mouse models for cancer. PDX collections, such as the NCI PDXNet, are powerful resources for preclinical therapeutic testing. However, variations in experimental and analysis procedures have limited interpretability. To determine the robustness of PDX studies, the PDXNet tested temozolomide drug response for three prevalidated PDX models (sensitive, resistant, and intermediate) across four blinded PDX Development and Trial Centers using independently selected standard operating procedures. Each PDTC was able to correctly identify the sensitive, resistant, and intermediate models, and statistical evaluations were concordant across all groups. We also developed and benchmarked optimized PDX informatics pipelines, and these yielded robust assessments across xenograft biological replicates. These studies show that PDX drug responses and sequence results are reproducible across diverse experimental protocols. In addition, we share the range of experimental procedures that maintained robustness, as well as standardized cloud-based workflows for PDX exome-sequencing and RNA-sequencing analyses and for evaluating growth. SIGNIFICANCE: The PDXNet Consortium shows that PDX drug responses and sequencing results are reproducible across diverse experimental protocols, establishing the potential for multisite preclinical studies to translate into clinical trials
Systematic Establishment of Robustness and Standards in Patient-Derived Xenograft Experiments and Analysis.
Patient-derived xenografts (PDX) are tumor-in-mouse models for cancer. PDX collections, such as the NCI PDXNet, are powerful resources for preclinical therapeutic testing. However, variations in experimental and analysis procedures have limited interpretability. To determine the robustness of PDX studies, the PDXNet tested temozolomide drug response for three prevalidated PDX models (sensitive, resistant, and intermediate) across four blinded PDX Development and Trial Centers using independently selected standard operating procedures. Each PDTC was able to correctly identify the sensitive, resistant, and intermediate models, and statistical evaluations were concordant across all groups. We also developed and benchmarked optimized PDX informatics pipelines, and these yielded robust assessments across xenograft biological replicates. These studies show that PDX drug responses and sequence results are reproducible across diverse experimental protocols. In addition, we share the range of experimental procedures that maintained robustness, as well as standardized cloud-based workflows for PDX exome-sequencing and RNA-sequencing analyses and for evaluating growth. SIGNIFICANCE: The PDXNet Consortium shows that PDX drug responses and sequencing results are reproducible across diverse experimental protocols, establishing the potential for multisite preclinical studies to translate into clinical trials
Abstract 3017: Advancing PDX research through model, data, and bioinformatics with the PDXNet Portal
Abstract
We created the PDX Network (PDXNet) Portal to provide an intuitive way for researchers to explore and understand the models, sequencing data, and bioinformatics workflows generated by NCI's PDXNet consortium for research access (https://portal.pdxnetwork.org/). The portal also provides metrics for PDXNet's activities, data processing protocols, and training materials for processing PDX data.
The PDXNet Portal highlights model and data resources that include 216 new models across 29 cancer types. The most prevalent cancers represented in the PDX model dataset include invasive breast carcinoma (30.6%), melanoma (18.1%), and adenocarcinoma (14.4%). PDXNet teams have provided 2263 sequencing files from 356 samples across 204 patients, comprising whole exome (82.9%) and RNA seq files (17.1%). The most prevalent cancers represented in the PDXNet sequencing data set include Breast Pleural Effusion (27.2%), Breast Poorly Differentiated (12.5%), and Lung Adenocarcinoma (9.6%). The portal also provides access to 9492 sequencing files across 78 disease types that include 2594 samples across 463 patients uploaded from the NCI Patient-Derived Model Repository. The dataset includes both whole exomes (52.8%) and RNA seq (47.2%) data. The PDMR samples include PDX (82.7%), primary tumor (5.7%), normal germline (5.5), organoid culture (3.2), and Mixed Tumor Culture (2.9). The PDMR dataset also has multiple passages: P0 (21.8%), P1(39.5%), P2 (25.6%), and P3 (8.5%). These models and data resources support ten PDXNet Pilot activities, multiple publications, and international collaborations.
PDXNet has also developed a set of 13 robust, validated, and standardized workflows for processing PDXNet whole-exome and RNA seq data. Collectively, these workflows allow for the standardized processing of PDX and complementary human tissues (normal and tumor).
Our plan is to continuously update the model and data lists on the PDX portal as resources are generated. We expect that the PDXNet generated models, scheduled to grow to 1000 new models by 2022, will support multi-agent treatment studies, determination of mechanisms of sensitivity and resistance, and pre-clinical trials for example through the COMBO-MATCH program. The robust standard workflows currently processing all PDX sequencing data may also facilitate harmonizing data across studies. Lastly, we expect that the generated sequencing data will support computational approaches for studying cancer evolution and the mechanisms underlying cancer treatments.
Citation Format: Soner Koc, Mike Lloyd, Steven Neuhauser, Javad Noodbakhsh, Anuj Srivastava, Xing Yi Woo, Ryan Jeon, Jeffrey Grover, Sara Seepo, Christian Frech, Jack DiGiovanna, PDXNet Consortium, Yvonne A. Evard, Tiffany Wallace, Jeffrey Moscow, James H. Doroshow, Nicholas Mitsuade, Salma Kaochar, Chong-xian Pan, Moon S. Chen, Luis Carvarjal-Carmona, Alana Welm, Bryan Welm, Michael T. Lewis, Govindan Ramaswamy, Li Ding, Shunquang Li, Meenherd Herlyn, Mike Davies, Jack Roth, Funda Meric-Bernstam, Peter Robinson, Carol J. Bult, Brandi Davis-Dusenbery, Dennis A. Dean, Jeffrey H. Chuang. Advancing PDX research through model, data, and bioinformatics with the PDXNet Portal [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3017.</jats:p
Assessment of Patient-Derived Xenograft Growth and Antitumor Activity: The NCI PDXNet Consensus Recommendations.
Although patient-derived xenografts (PDX) are commonly used for preclinical modeling in cancer research, a standard approach to in vivo tumor growth analysis and assessment of antitumor activity is lacking, complicating the comparison of different studies and determination of whether a PDX experiment has produced evidence needed to consider a new therapy promising. We present consensus recommendations for assessment of PDX growth and antitumor activity, providing public access to a suite of tools for in vivo growth analyses. We expect that harmonizing PDX study design and analysis and assessing a suite of analytical tools will enhance information exchange and facilitate identification of promising novel therapies and biomarkers for guiding cancer therapy
Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts.
Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host
Recommended from our members
PDXNet portal: patient-derived Xenograft model, data, workflow and tool discovery
We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI's Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials
