143 research outputs found

    Foodways in transition: food plants, diet and local perceptions of change in a Costa Rican Ngäbe community

    Get PDF
    Background Indigenous populations are undergoing rapid ethnobiological, nutritional and socioeconomic transitions while being increasingly integrated into modernizing societies. To better understand the dynamics of these transitions, this article aims to characterize the cultural domain of food plants and analyze its relation with current day diets, and the local perceptions of changes given amongst the Ngäbe people of Southern Conte-Burica, Costa Rica, as production of food plants by its residents is hypothesized to be drastically in recession with an decreased local production in the area and new conservation and development paradigms being implemented. Methods Extensive freelisting, interviews and workshops were used to collect the data from 72 participants on their knowledge of food plants, their current dietary practices and their perceptions of change in local foodways, while cultural domain analysis, descriptive statistical analyses and development of fundamental explanatory themes were employed to analyze the data. Results Results show a food plants domain composed of 140 species, of which 85 % grow in the area, with a medium level of cultural consensus, and some age-based variation. Although many plants still grow in the area, in many key species a decrease on local production–even abandonment–was found, with much reduced cultivation areas. Yet, the domain appears to be largely theoretical, with little evidence of use; and the diet today is predominantly dependent on foods bought from the store (more than 50 % of basic ingredients), many of which were not salient or not even recognized as ‘food plants’ in freelists exercises. While changes in the importance of food plants were largely deemed a result of changes in cultural preferences for store bought processed food stuffs and changing values associated with farming and being food self-sufficient, Ngäbe were also aware of how changing household livelihood activities, and the subsequent loss of knowledge and use of food plants, were in fact being driven by changes in social and political policies, despite increases in forest cover and biodiversity. Conclusions Ngäbe foodways are changing in different and somewhat disconnected ways: knowledge of food plants is varied, reflecting most relevant changes in dietary practices such as lower cultivation areas and greater dependence on food from stores by all families. We attribute dietary shifts to socioeconomic and political changes in recent decades, in particular to a reduction of local production of food, new economic structures and agents related to the State and globalization

    Radiologist experience and CT examination quality determine metastasis detection in patients with esophageal or gastric cardia cancer

    Get PDF
    We aimed to separate the influence of radiologist experience from that of CT quality in the evaluation of CT examinations of patients with esophageal or gastric cardia cancer. Two radiologists from referral centers ('expert radiologists') and six radiologists from regional non-referral centers ('non-expert radiologists') performed 240 evaluations of 72 CT examinations of patients diagnosed with esophageal or gastric cardia cancer between 1994 and 2003. We used conditional logistic regression analysis to calculate odds ratios (OR) for the likelihood of a correct diagnosis. Expert radiologists made a correct diagnosis of the presence or absence of distant metastases according to the gold standard almost three times more frequently (OR 2.

    Strain-Dependent Differences in Bone Development, Myeloid Hyperplasia, Morbidity and Mortality in Ptpn2-Deficient Mice

    Get PDF
    Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2) have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2ex2−/ex2− mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2−/− mice (BALB/c-129SJ) generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2ex2−/ex2− mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2−/− (BALB/c) mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea) evident in Ptpn2−/− (BALB/c) mice were not detected in Ptpn2ex2−/ex2− mice. At 14 days of age, bone development was delayed in Ptpn2−/− (BALB/c) mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2ex2−/ex2− mice. Ptpn2ex2−/ex2− mice had defects in erythropoiesis and B cell development as evident in Ptpn2−/− (BALB/c) mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2−/− (BALB/c) mice. Moreover, thymic atrophy, another feature of Ptpn2−/− (BALB/c) mice, was delayed in Ptpn2ex2−/ex2− mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2−/− (BALB/c) mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2ex2−/ex2− mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent

    Fertilization with beneficial microorganisms decreases tomato defenses against insect pests

    Get PDF
    International audienceThe adverse effects of chemical fertilizers on agricultural fields and the environment are compelling society to move toward more sustainable farming techniques. “Effective microorganisms” is a beneficial microbial mixture that has been developed to improve soil quality and crop yield while simultaneously dramatically reducing organic chemical application. Additional indirect benefits of beneficial microorganisms application may include increased plant resistance to herbivore attack, though this has never been tested till now. Tomato plants were grown in controlled greenhouse conditions in a full-factorial design with beneficial microorganisms inoculation and commercial chemical fertilizer application as main factors. We measured plant yield and growth parameters, as well as resistance against the generalist pest Spodoptera littoralis moth larval attack. Additionally, we measured plant defensive chemistry to underpin resistance mechanisms. Overall, we found that, comparable to chemical fertilizer, beneficial microorganisms increased plant growth fruit production by 35 and 61 %, respectively. Contrary to expectations, plants inoculated with beneficial microorganisms sustained 25 % higher insect survival and larvae were in average 41 % heavier than on unfertilized plants. We explain these results by showing that beneficial microorganism-inoculated plants were impaired in the induction of the toxic glycoalkaloid molecule tomatine and the defense-related phytohormone jasmonic acid after herbivore attack. For the first time, we therefore show that biofertilizer application might endure unintended, pest-mediated negative effects, and we thus suggest that biofertilizer companies should incorporate protection attributes in their studies prior to commercialization

    Fitting the HIV Epidemic in Zambia: A Two-Sex Micro-Simulation Model

    Get PDF
    BACKGROUND: In describing and understanding how the HIV epidemic spreads in African countries, previous studies have not taken into account the detailed periods at risk. This study is based on a micro-simulation model (individual-based) of the spread of the HIV epidemic in the population of Zambia, where women tend to marry early and where divorces are not frequent. The main target of the model was to fit the HIV seroprevalence profiles by age and sex observed at the Demographic and Health Survey conducted in 2001. METHODS AND FINDINGS: A two-sex micro-simulation model of HIV transmission was developed. Particular attention was paid to precise age-specific estimates of exposure to risk through the modelling of the formation and dissolution of relationships: marriage (stable union), casual partnership, and commercial sex. HIV transmission was exclusively heterosexual for adults or vertical (mother-to-child) for children. Three stages of HIV infection were taken into account. All parameters were derived from empirical population-based data. Results show that basic parameters could not explain the dynamics of the HIV epidemic in Zambia. In order to fit the age and sex patterns, several assumptions were made: differential susceptibility of young women to HIV infection, differential susceptibility or larger number of encounters for male clients of commercial sex workers, and higher transmission rate. The model allowed to quantify the role of each type of relationship in HIV transmission, the proportion of infections occurring at each stage of disease progression, and the net reproduction rate of the epidemic (R(0) = 1.95). CONCLUSIONS: The simulation model reproduced the dynamics of the HIV epidemic in Zambia, and fitted the age and sex pattern of HIV seroprevalence in 2001. The same model could be used to measure the effect of changing behaviour in the future

    Sick leave and work disability in patients with early arthritis

    Get PDF
    We studied the occurrence of sick leave and work disability, the presence of workplace adaptations and the usage of professional guidance related to working problems in patients with early arthritis. Inclusion criteria were arthritis symptoms of less than 2 years duration and a paid job at the time of diagnosis. Assessments were done in connection with an early arthritis clinic (EAC) at entry into the cohort and 12 months thereafter by means of a questionnaire comprising questions on sick leave (absenteeism from work reported to the employer), work disability (receiving a full or partial work disability pension), unemployment, work adaptations and professional guidance related to working problems. Fifty-seven of the 69 participants (83%) had an arthritis symptom duration of <6 months. The number of patients with sick leave due to arthritis in the past 12 months decreased from 28 (41%) at study entry to 18 (26%) after 12 months of follow-up. The number of patients receiving a work disability pension increased from 5 (7%) at study entry to 13 (19%) after 12 months of follow-up (10 partial and 3 full). Sick leave in the 12 months before study entry appeared to be the most important predictor of the institution or increase in a work disability pension (odds ratio, 16.1; 95%CI, 1.8–142.8). Between study entry and follow-up, the number of patients with workplace adaptations increased from 20 (29%) to 28 (42%), whereas the number of patients receiving vocational guidance decreased from 48 (70%) to 36 (52%). In patients with early arthritis and a paid job, arthritis-related sick leave was common and occurred in part before patients entered the EAC and a diagnosis was made. About 20% of the patients became permanently work disabled, with partial work disability being more common than full work disability. Considerable proportions of patients received workplace adaptations and professional guidance with working problems

    The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis

    Get PDF
    Mucositis, also referred to as mucosal barrier injury, is one of the most debilitating side effects of radiotherapy and chemotherapy treatment. Clinically, mucositis is associated with pain, bacteremia, and malnutrition. Furthermore, mucositis is a frequent reason to postpone chemotherapy treatment, ultimately leading towards a higher mortality in cancer patients. According to the model introduced by Sonis, both inflammation and apoptosis of the mucosal barrier result in its discontinuity, thereby promoting bacterial translocation. According to this five-phase model, the intestinal microbiota plays no role in the pathophysiology of mucositis. However, research has implicated a prominent role for the commensal intestinal microbiota in the development of several inflammatory diseases like inflammatory bowel disease, pouchitis, and radiotherapy-induced diarrhea. Furthermore, chemotherapeutics have a detrimental effect on the intestinal microbial composition (strongly decreasing the numbers of anaerobic bacteria), coinciding in time with the development of chemotherapy-induced mucositis. We hypothesize that the commensal intestinal microbiota might play a pivotal role in chemotherapy-induced mucositis. In this review, we propose and discuss five pathways in the development of mucositis that are potentially influenced by the commensal intestinal microbiota: 1) the inflammatory process and oxidative stress, 2) intestinal permeability, 3) the composition of the mucus layer, 4) the resistance to harmful stimuli and epithelial repair mechanisms, and 5) the activation and release of immune effector molecules. Via these pathways, the commensal intestinal microbiota might influence all phases in the Sonis model of the pathogenesis of mucositis. Further research is needed to show the clinical relevance of restoring dysbiosis, thereby possibly decreasing the degree of intestinal mucositis

    Dormancy within Staphylococcus epidermidis biofilms : a transcriptomic analysis by RNA-seq

    Get PDF
    The proportion of dormant bacteria within Staphylococcus epidermidis biofilms may determine its inflammatory profile. Previously, we have shown that S. epidermidis biofilms with higher proportions of dormant bacteria have reduced activation of murine macrophages. RNA-sequencing was used to identify the major transcriptomic differences between S. epidermidis biofilms with different proportions of dormant bacteria. To accomplish this goal, we used an in vitro model where magnesium allowed modulation of the proportion of dormant bacteria within S. epidermidis biofilms. Significant differences were found in the expression of 147 genes. A detailed analysis of the results was performed based on direct and functional gene interactions. Biological processes among the differentially expressed genes were mainly related to oxidation-reduction processes and acetyl-CoA metabolic processes. Gene set enrichment revealed that the translation process is related to the proportion of dormant bacteria. Transcription of mRNAs involved in oxidation-reduction processes was associated with higher proportions of dormant bacteria within S. epidermidis biofilm. Moreover, the pH of the culture medium did not change after the addition of magnesium, and genes related to magnesium transport did not seem to impact entrance of bacterial cells into dormancy.The authors thank Stephen Lorry at Harvard Medical School for providing CLC Genomics software. This work was funded by Fundacao para a Ciencia e a Tecnologia (FCT) and COMPETE grants PTDC/BIA-MIC/113450/2009, FCOMP-01-0124-FEDER-014309, FCOMP-01-0124-FEDER-022718 (FCT PEst-C/SAU/LA0002/2011), QOPNA research unit (project PEst-C/QUI/UI0062/2011), and CENTRO-07-ST24-FEDER-002034. The following authors had an individual FCT fellowship: VC (SFRH/BD/78235/2011) and AF (2SFRH/BD/62359/2009)
    corecore