20 research outputs found

    Distribution and Abundance of Glucocorticoid and Mineralocorticoid Receptors throughout the Brain of the Great Tit (Parus major)

    Get PDF
    The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA) axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids-the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR)-are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major), creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus (HP)-the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual's behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC), and moderate MR in robust nucleus of the arcopallium (RA). Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning) that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations and performance traits under selection, including behavior

    Association of the neonatal Fc receptor promoter variable number of tandem repeat polymorphism with immunoglobulin response in patients with chronic inflammatory demyelinating polyneuropathy

    No full text
    Background and purpose:\textbf {Background and purpose:} Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease with humoral and cellular autoimmunity causing demyelination of peripheral nerves, commonly treated with intravenous immunoglobulins (IVIg). The neonatal Fc receptor (FcRn), encoded by the FCGRT\it FCGRT gene, prevents the degradation of immunoglobulin G (IgG) by recycling circulating IgG. A variable number of tandem repeat (VNTR) polymorphism in the promoter region of the FCGRT\it FCGRT gene is associated with different expression levels of mRNA and protein. Thus, patients with genotypes associated with relatively low FcRn expression may show a poorer treatment response to IVIg due to increased IVIg degradation. Methods:\bf Methods: VNTR genotypes were analyzed in 144 patients with CIDP. Patients' clinical data, including neurological scores and treatment data, were collected as part of the Immune-Mediated Neuropathies Biobank registry. Results:\bf Results: Most patients (n\it n = 124, 86%) were VNTR 3/3 homozygotes, and 20 patients (14%) were VNTR 2/3 heterozygotes. Both VNTR 3/3 and VNTR 2/3 genotype groups showed no difference in clinical disability and immunoglobulin dosage. However, patients with a VNTR 2 allele were more likely to receive subcutaneous immunoglobulins (SCIg) than patients homozygous for the VNTR 3 allele (25% vs. 9.7%, p\it p = 0.02) and were more likely to receive second-line therapy (75% vs. 54%, p\it p = 0.05). Conclusions:\bf Conclusions: The VNTR 2/3 genotype is associated with the administration of SCIg, possibly reflecting a greater benefit from SCIg due to more constant immunoglobulin levels without lower IVIg levels between the treatment circles. Also, the greater need for second-line treatment in VNTR 2/3 patients could be an indirect sign of a lower response to immunoglobulins

    Novel variants in a patient with late-onset hyperprolinemia type II

    No full text
    Background\bf Background Hyperprolinemia type 2 (HPII) is a rare autosomal recessive disorder of the proline metabolism, that affects the ALDH4A1 gene. So far only four different pathogenic mutations are known. The manifestation is mostly in neonatal age, in early infancy or early childhood. Casepresentation\bf Case presentation The 64-years female patient had a long history of abdominal pain, and episode of an acute neuritis. Ten years later she was admitted into the neurological intensive-care-unit with acute abdominal pain, multiple generalized epileptic seizures, a vertical gaze palsy accompanied by extensive lactic acidosis in serum 26.0 mmol/l (reference: 0.55–2.2 mmol/l) and CSF 12.01 mmol/l (reference: 1.12–2.47 mmol/l). Due to repeated epileptic seizures and secondary complications a long-term sedation with a ventilation therapy over 20 days was administered. A diagnostic work-up revealed up to 400-times increased prolin-level in urine CSF and blood. Furthermore, a low vitamin-B6_6 serum value was found, consistent with a HPII causing secondary pyridoxine deficiency and seizures. The ALDH4A1\it ALDH4A1 gene sequencing confirmed two previously unknown compound heterozygous variants (ALDH4A1\it ALDH4A1 gene (NM_003748.3) Intron 1: c.62 + 1G > A - heterozygous and ALDH4A1\it ALDH4A1 gene (NM_003748.3) Exon 5 c.349G > C, p.(Asp117His) - heterozygous). Under high-dose vitamin-B6_6 therapy no further seizures occurred. Conclusion\bf Conclusion We describe two novel ALDH4A1\it ALDH4A1-variants in an adult patient with hyperprolinemia type II causing secondary pyridoxine deficiency and seizures. Severe and potentially life-threatening course of this treatable disease emphasizes the importance of diagnostic vigilance and thorough laboratory work-up including gene analysis even in cases with atypical late manifestation

    bHLH transcription factor Math6 antagonizes TGF-β\beta signalling in reprogramming, pluripotency and early cell fate decisions

    No full text
    The basic helix-loop-helix (bHLH) transcription factor Math6 (Atonal homolog 8; Atoh8) plays a crucial role in a number of cellular processes during embryonic development, iron metabolism and tumorigenesis. We report here on its involvement in cellular reprogramming from fibroblasts to induced pluripotent stem cells, in the maintenance of pluripotency and in early fate decisions during murine development. Loss of Math6 disrupts mesenchymal-to-epithelial transition during reprogramming and primes pluripotent stem cells towards the mesendodermal fate. Math6 can thus be considered a regulator of reprogramming and pluripotent stem cell fate. Additionally, our results demonstrate the involvement of Math6 in SMAD-dependent TGF beta signalling. We furthermore monitor the presence of the Math6 protein during these developmental processes using a newly generated Math6Flag-tag\textit {Math6Flag-tag} mouse. Taken together, our results suggest that Math6 counteracts TGF beta signalling and, by this, affects the initiating step of cellular reprogramming, as well as the maintenance of pluripotency and early differentiation

    Exome sequencing and optical genome mapping in molecularly unsolved cases of duchenne muscular dystrophy

    No full text
    Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that mainly affects boys due to X\it X-linked recessive inheritance. In most affected individuals, MLPA or sequencing-based techniques detect deletions, duplications, or point mutations in the dystrophin-encoding DMD\it DMD gene. However, in a small subset of patients clinically diagnosed with DMD, the molecular cause is not identified with these routine methods. Evaluation of the 60 DMD patients in our center revealed three cases without a known genetic cause. DNA samples of these patients were analyzed using whole-exome sequencing (WES) and, if unconclusive, optical genome mapping (OGM). WES led to a diagnosis in two cases: one patient was found to carry a splice mutation in the DMD\it DMD gene that had not been identified during previous Sanger sequencing. In the second patient, we detected two variants in the fukutin gene (FKTN)\it (FKTN) that were presumed to be disease-causing. In the third patient, WES was unremarkable, but OGM identified an inversion disrupting the DMD\it DMD gene (~1.28 Mb) that was subsequently confirmed with long-read sequencing. These results highlight the importance of reanalyzing unsolved cases using WES and demonstrate that OGM is a useful method for identifying large structural variants in cases with unremarkable exome sequencing
    corecore