34 research outputs found

    Oxidative Stress and NF-ÎşB signaling are involved in LPS induced pulmonary dysplasia in chick embryos

    Get PDF
    Inflammation or dysbacteriosis-derived lipopolysaccharides (LPS) adversely influence the embryonic development of respiratory system. However, the precise pathological mechanisms still remain to be elucidated. In this study, we demonstrated that LPS exposure caused lung maldevelopment in chick embryos, including higher embryo mortality, increased thickness of alveolar gas exchange zone, and accumulation of PAS+ immature pulmonary cells, accompanied with reduced expression of alveolar epithelial cell markers and lamellar body count. Upon LPS exposure, pulmonary cell proliferation was significantly altered and cell apoptosis was inhibited as well, indicating a delayed progress of pulmonary development. LPS treatment also resulted in reduced CAV-1 expression and up-regulation of Collagen I, suggesting increased lung fibrosis, which was verified by Masson staining. Moreover, LPS induced enhanced Nrf2 expression in E18 lungs, and the increased reactive oxygen species (ROS) production was confirmed in MLE-12 cells in vitro. Antioxidant vitamin C restored the LPS induced down-regulation of ABCA3, SP-C and GATA-6 in MLE-12 cells. Furthermore, LPS induced activation of NF-ÎşB signaling in MLE-12 cells, and the LPS-induced decrease in SP-C expression was partially abrogated by blocking NF-ÎşB signaling with Bay-11-7082. Bay-11-7082 also inhibited LPS-induced increases of ROS and Nrf2 expression. Taken together, we have demonstrated that oxidative stress and NF-ÎşB signaling are involved in LPS induced disruption of pulmonary cell development in chick embryos

    Cardiovascular Magnetic Resonance in Marfan syndrome

    Full text link

    The revised Ghent nosology for the Marfan syndrome.

    Get PDF
    The diagnosis of Marfan syndrome (MFS) relies on defined clinical criteria (Ghent nosology), outlined by international expert opinion to facilitate accurate recognition of this genetic aneurysm syndrome and to improve patient management and counselling. These Ghent criteria, comprising a set of major and minor manifestations in different body systems, have proven to work well since with improving molecular techniques, confirmation of the diagnosis is possible in over 95% of patients. However, concerns with the current nosology are that some of the diagnostic criteria have not been sufficiently validated, are not applicable in children or necessitate expensive and specialised investigations. The recognition of variable clinical expression and the recently extended differential diagnosis further confound accurate diagnostic decision making. Moreover, the diagnosis of MFS--whether or not established correctly--can be stigmatising, hamper career aspirations, restrict life insurance opportunities, and cause psychosocial burden. An international expert panel has established a revised Ghent nosology, which puts more weight on the cardiovascular manifestations and in which aortic root aneurysm and ectopia lentis are the cardinal clinical features. In the absence of any family history, the presence of these two manifestations is sufficient for the unequivocal diagnosis of MFS. In absence of either of these two, the presence of a bonafide FBN1 mutation or a combination of systemic manifestations is required. For the latter a new scoring system has been designed. In this revised nosology, FBN1 testing, although not mandatory, has greater weight in the diagnostic assessment. Special considerations are given to the diagnosis of MFS in children and alternative diagnoses in adults. We anticipate that these new guidelines may delay a definitive diagnosis of MFS but will decrease the risk of premature or misdiagnosis and facilitate worldwide discussion of risk and follow-up/management guidelines
    corecore