5,202 research outputs found

    Whip Use by Jockeys in a Sample of Australian Thoroughbred Races—An Observational Study

    Get PDF
    The use of whips by jockeys is an issue. The current study viewed opportunistic high-speed footage of 15 race finishes frame-by-frame to examine the outcomes of arm and wrist actions (n = 350) on 40 horses viewed from the left of the field. Any actions fully or partially obscured by infrastructure or other horses were removed from the database, leaving a total of 104 non-contact sweeps and 134 strikes. For all instances of arm actions that resulted in fully visible whip strikes behind the saddle (n = 109), the outcomes noted were area struck, percentage of unpadded section making contact, whether the seam made contact and whether a visible indentation was evident on impact. We also recorded use of clockwise or counter-clockwise arm action from each jockey's whip, whether the whip was held like a tennis racquet or a ski pole, whether the hind leg on the side of the impact was in stance or swing phase and whether the jockey's arm was seen traveling above shoulder height. The goal of the study was to characterize the area struck and the visual impact of whip use at the level of the horse. We measured the ways in which both padded and unpadded sections of the whip made impact. There was evidence of at least 28 examples, in 9 horses, of breaches of the whip rules (one seam contact, 13 contacts with the head, and 14 arm actions that rose above the height of the shoulder). The whip caused a visible indentation on 83% of impacts. The unpadded section of the whip made contact on 64% of impacts. The results call into question the ability of Stewards to effectively police the rules concerning whip use and, more importantly, challenge the notion that padding the distal section of whips completely safeguards horses from any possible whip-related pain

    Predictive feedback control and Fitts' law

    Get PDF
    Fitts’ law is a well established empirical formula, known for encapsulating the “speed-accuracy trade-off”. For discrete, manual movements from a starting location to a target, Fitts’ law relates movement duration to the distance moved and target size. The widespread empirical success of the formula is suggestive of underlying principles of human movement control. There have been previous attempts to relate Fitts’ law to engineering-type control hypotheses and it has been shown that the law is exactly consistent with the closed-loop step-response of a time-delayed, first-order system. Assuming only the operation of closed-loop feedback, either continuous or intermittent, this paper asks whether such feedback should be predictive or not predictive to be consistent with Fitts law. Since Fitts’ law is equivalent to a time delay separated from a first-order system, known control theory implies that the controller must be predictive. A predictive controller moves the time-delay outside the feedback loop such that the closed-loop response can be separated into a time delay and rational function whereas a non- predictive controller retains a state delay within feedback loop which is not consistent with Fitts’ law. Using sufficient parameters, a high-order non-predictive controller could approximately reproduce Fitts’ law. However, such high-order, “non-parametric” controllers are essentially empirical in nature, without physical meaning, and therefore are conceptually inferior to the predictive controller. It is a new insight that using closed-loop feedback, prediction is required to physically explain Fitts’ law. The implication is that prediction is an inherent part of the “speed-accuracy trade-off”

    Imaging and Dynamics of Light Atoms and Molecules on Graphene

    Full text link
    Observing the individual building blocks of matter is one of the primary goals of microscopy. The invention of the scanning tunneling microscope [1] revolutionized experimental surface science in that atomic-scale features on a solid-state surface could finally be readily imaged. However, scanning tunneling microscopy has limited applicability due to restrictions, for example, in sample conductivity, cleanliness, and data aquisition rate. An older microscopy technique, that of transmission electron microscopy (TEM) [2, 3] has benefited tremendously in recent years from subtle instrumentation advances, and individual heavy (high atomic number) atoms can now be detected by TEM [4 - 7] even when embedded within a semiconductor material [8, 9]. However, detecting an individual low atomic number atom, for example carbon or even hydrogen, is still extremely challenging, if not impossible, via conventional TEM due to the very low contrast of light elements [2, 3, 10 - 12]. Here we demonstrate a means to observe, by conventional transmision electron microscopy, even the smallest atoms and molecules: On a clean single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon can be seen as if they were suspended in free space. We directly image such individual adatoms, along with carbon chains and vacancies, and investigate their dynamics in real time. These techniques open a way to reveal dynamics of more complex chemical reactions or identify the atomic-scale structure of unknown adsorbates. In addition, the study of atomic scale defects in graphene may provide insights for nanoelectronic applications of this interesting material.Comment: 9 pages manuscript and figures, 9 pages supplementary informatio

    Prenatal origin of childhood AML occurs less frequently than in childhood ALL

    Get PDF
    Background While there is enough convincing evidence in childhood acute lymphoblastic leukemia (ALL), the data on the pre-natal origin in childhood acute myeloid leukemia (AML) are less comprehensive. Our study aimed to screen Guthrie cards (neonatal blood spots) of non-infant childhood AML and ALL patients for the presence of their respective leukemic markers. Methods We analysed Guthrie cards of 12 ALL patients aged 2–6 years using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements (n = 15) and/or intronic breakpoints of TEL/AML1 fusion gene (n = 3). In AML patients (n = 13, age 1–14 years) PML/RARalpha (n = 4), CBFbeta/MYH11 (n = 3), AML1/ETO (n = 2), MLL/AF6 (n = 1), MLL/AF9 (n = 1) and MLL/AF10 (n = 1) fusion genes and/or internal tandem duplication of FLT3 gene (FLT3/ITD) (n = 2) were used as clonotypic markers. Assay sensitivity determined using serial dilutions of patient DNA into the DNA of a healthy donor allowed us to detect the pre-leukemic clone in Guthrie card providing 1–3 positive cells were present in the neonatal blood spot. Results In 3 patients with ALL (25%) we reproducibly detected their leukemic markers (Ig/TCR n = 2; TEL/AML1 n = 1) in the Guthrie card. We did not find patient-specific molecular markers in any patient with AML. Conclusion In the largest cohort examined so far we used identical approach for the backtracking of non-infant childhood ALL and AML. Our data suggest that either the prenatal origin of AML is less frequent or the load of pre-leukemic cells is significantly lower at birth in AML compared to ALL cases

    Quantum to Classical Transition in a Single-Ion Laser

    Full text link
    Stimulated emission of photons from a large number of atoms into the mode of a strong light field is the principle mechanism for lasing in "classical" lasers. The onset of lasing is marked by a threshold which can be characterised by a sharp increase in photon flux as a function of external pumping strength. The same is not necessarily true for the fundamental building block of a laser: a single trapped atom interacting with a single optical radiation mode. It has been shown that such a "quantum" laser can exhibit thresholdless lasing in the regime of strong coupling between atom and radiation field. However, although theoretically predicted, a threshold at the single-atom level could not be experimentally observed so far. Here, we demonstrate and characterise a single-atom laser with and without threshold behaviour by changing the strength of atom-light field coupling. We observe the establishment of a laser threshold through the accumulation of photons in the optical mode even for a mean photon number substantially lower than for the classical case. Furthermore, self-quenching occurs for very strong external pumping and constitutes an intrinsic limitation of single-atom lasers. Moreover, we find that the statistical properties of the emitted light can be adjusted for weak external pumping, from the quantum to the classical domain. Our observations mark an important step towards fundamental understanding of laser operation in the few-atom limit including systems based on semiconductor quantum dots or molecules.Comment: 19 pages, 4 figures, 10 pages supplement, accepted by Nature Physic

    A Four-Antigen Mixture for Rapid Assessment of Onchocerca volvulus Infection

    Get PDF
    Caused by the filarial parasite Onchocerca volvulus, onchocerciasis is a neglected tropical disease associated with blindness and severe dermatitis. Available diagnostic methods are either invasive, require hours or days to perform, and/or need sophisticated equipment to be conducted. Thus, there is an urgent need for simple and rapid technologies for the specific diagnosis of Onchocerca volvulus infection. Here we investigated whether luciferase immunoprecipitation systems (LIPS) can produce a more rapid and specific test for diagnosis of O. volvulus infection. Using modified versions of previously identified Onchocerca-specific antigens, LIPS tests detected antibodies to all four O. volvulus antigens and easily distinguished the O. volvulus-infected samples from uninfected samples. We also tested these four different antigens in a simpler format as a combined mixture and distinguished 100% of the confirmed cases from the uninfected controls. A rapid 15-minute version of this mixture test (QLIPS) also allowed distinction of 100% of the cases from those uninfected and performed even better in identifying Onchocerca from other cross-reactive parasitic infections. This study suggests that this rapid LIPS test (QLIPS) has the potential to be used in point-of-care detection of onchocerciasis and thereby may provide a new tool for diagnosis and the monitoring of transmission control measures

    Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples

    Get PDF
    Numerous studies are currently underway to characterize the microbial communities inhabiting our world. These studies aim to dramatically expand our understanding of the microbial biosphere and, more importantly, hope to reveal the secrets of the complex symbiotic relationship between us and our commensal bacterial microflora. An important prerequisite for such discoveries are computational tools that are able to rapidly and accurately compare large datasets generated from complex bacterial communities to identify features that distinguish them

    Interactions between HIV-1 Reverse Transcriptase and the Downstream Template Strand in Stable Complexes with Primer-Template

    Get PDF
    Background: Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTPNRTNP/T complex) and in the complex containing the pyrophosphate analog, foscarnet (foscarnetNRTNP/T complex). Methods and Results: UV-induced cross-linking between RT and the DNA template strand was most efficient when a bromodeoxyuridine residue was placed in the +2 position (the first template position downstream from the incoming dNTP). Furthermore, formation of the +1 dNTPNRTNP/T complex on a biotin-containing template inhibited binding of streptavidin when biotin was in the +2 position on the template but not when the biotin was in the +3 position. Streptavidin pre-bound to a biotin residue in the template caused RT to stall two to three nucleotides upstream from the biotin residue. The downstream border of the complex formed by the stalled RT was mapped by digestion with exonuclease RecJF. UV-induced cross-linking of the complex formed by the pyrophosphate analog, foscarnet, with RT and P/T occurred preferentially with bromodeoxyuridine in the +1 position on the template in keeping with the location of RT one base upstream in the foscarnetNRTNP/T complex (i.e., in the pre-translocation position). Conclusions: For +1 dNTPNRTNP/T and foscarnetNRTNP/T stable complexes, tight interactions were observed between RT an

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury
    corecore