8,267 research outputs found
Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo.
Experiments were designed to study the effect of systemically administered IL-5 on local eosinophil accumulation induced by the intradermal injection of the chemokine eotaxin in the guinea pig. Intravenous interleukin-5 (IL-5) stimulated a rapid and dramatic increase in the numbers of accumulating eosinophils induced by i.d.-injected eotaxin and, for comparison, leukotriene B4. The numbers of locally accumulating eosinophils correlated directly with a rapid increase in circulating eosinophils: circulating eosinophil numbers were 13-fold higher 1 h after intravenous IL-5 (18.3 pmol/kg). This increase in circulating cells corresponded with a reduction in the number of displaceable eosinophils recovered after flushing out the femur bone marrow cavity. Intradermal IL-5, at the doses tested, did not induce significant eosinophil accumulation. We propose that these experiments simulate important early features of the tissue response to local allergen exposure in a sensitized individual, with eosinophil chemoattractant chemokines having an important local role in eosinophil recruitment from blood microvessels, and IL-5 facilitating this process by acting remotely as a hormone to stimulate the release into the circulation of a rapidly mobilizable pool of bone marrow eosinophils. This action of IL-5 would be complementary to the other established activities of IL-5 that operate over a longer time course
Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation.
Eosinophil accumulation is a prominent feature of allergic inflammatory reactions, such as those occurring in the lung of the allergic asthmatic, but the endogenous chemoattractants involved have not been identified. We have investigated this in an established model of allergic inflammation, using in vivo systems both to generate and assay relevant activity. Bronchoalveolar lavage (BAL) fluid was taken from sensitized guinea pigs at intervals after aerosol challenge with ovalbumin. BAL fluid was injected intradermally in unsensitized assay guinea pigs and the accumulation of intravenously injected 111In-eosinophils was measured. Activity was detected at 30 min after allergen challenge, peaking from 3 to 6 h and declining to low levels by 24 h. 3-h BAL fluid was purified using high performance liquid chromatography techniques in conjunction with the skin assay. Microsequencing revealed a novel protein from the C-C branch of the platelet factor 4 superfamily of chemotactic cytokines. The protein, eotaxin, exhibits homology of 53% with human MCP-1, 44% with guinea pig MCP-1, 31% with human MIP-1α, and 26% with human RANTES. Laser desorption time of flight mass analysis gave four different signals (8.15, 8.38, 8.81, and 9.03 kD), probably reflecting differential O-glycosylation. Eotaxin was highly potent, inducing substantial 111In-eosinophil accumulation at a 1-2-pmol dose in the skin, but did not induce significant 111In-neutrophil accumulation. Eotaxin was a potent stimulator of both guinea pig and human eosinophils in vitro. Human recombinant RANTES, MIP-1α, and MCP-1 were all inactive in inducing 111In-eosinophil accumulation in guinea pig skin; however, evidence was obtained that eotaxin shares a binding site with RANTES on guinea pig eosinophils. This is the first description of a potent eosinophil chemoattractant cytokine generated in vivo and suggests the possibility that similar molecules may be important in the human asthmatic lung
The discovery of a novel antibiotic for the treatment of Clostridium difficile infections: a story of an effective academic-industrial partnership
Academic drug discovery is playing an increasingly important role in the identification of new therapies for a wide range of diseases. There is no one model that guarantees success. We describe here a drug discovery story where chance, the ability to capitalise on chance, and the assembling of a range of expertise, have all played important roles in the discovery and subsequent development of an antibiotic chemotype based on the bis-benzimidazole scaffold, with potency against a number of current therapeutically challenging diseases. One compound in this class, SMT19969, has recently entered Phase 2 human clinical trials for the treatment of Clostridium difficile infections
Incremental dimension reduction of tensors with random index
We present an incremental, scalable and efficient dimension reduction
technique for tensors that is based on sparse random linear coding. Data is
stored in a compactified representation with fixed size, which makes memory
requirements low and predictable. Component encoding and decoding are performed
on-line without computationally expensive re-analysis of the data set. The
range of tensor indices can be extended dynamically without modifying the
component representation. This idea originates from a mathematical model of
semantic memory and a method known as random indexing in natural language
processing. We generalize the random-indexing algorithm to tensors and present
signal-to-noise-ratio simulations for representations of vectors and matrices.
We present also a mathematical analysis of the approximate orthogonality of
high-dimensional ternary vectors, which is a property that underpins this and
other similar random-coding approaches to dimension reduction. To further
demonstrate the properties of random indexing we present results of a synonym
identification task. The method presented here has some similarities with
random projection and Tucker decomposition, but it performs well at high
dimensionality only (n>10^3). Random indexing is useful for a range of complex
practical problems, e.g., in natural language processing, data mining, pattern
recognition, event detection, graph searching and search engines. Prototype
software is provided. It supports encoding and decoding of tensors of order >=
1 in a unified framework, i.e., vectors, matrices and higher order tensors.Comment: 36 pages, 9 figure
Ballistic nanofriction
Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS)
and nanomotors, increasingly involve large speeds, and rotations as well as
translations of the moving surfaces; yet, the physics of high speed nanoscale
friction is so far unexplored. Here, by simulating the motion of drifting and
of kicked Au clusters on graphite - a workhorse system of experimental
relevance -- we demonstrate and characterize a novel "ballistic" friction
regime at high speed, separate from drift at low speed. The temperature
dependence of the cluster slip distance and time, measuring friction, is
opposite in these two regimes, consistent with theory. Crucial to both regimes
is the interplay of rotations and translations, shown to be correlated in slow
drift but anticorrelated in fast sliding. Despite these differences, we find
the velocity dependence of ballistic friction to be, like drift, viscous
Early and efficient detection of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures.
Early, efficient and inexpensive methods for the detection of pulmonary tuberculosis are urgently needed for effective patient management as well as to interrupt transmission. These methods to detect M. tuberculosis in a timely and affordable way are not yet widely available in resource-limited settings. In a developing-country setting, we prospectively evaluated two methods for culturing and detecting M. tuberculosis in sputum. Sputum samples were cultured in liquid assay (micro broth culture) in microplate wells and growth was detected by microscopic observation, or in Löwenstein-Jensen (LJ) solid media where growth was detected by visual inspection for colonies. Sputum samples were collected from 321 tuberculosis (TB) suspects attending Bugando Medical Centre, in Mwanza, Tanzania, and were cultured in parallel. Pulmonary tuberculosis cases were diagnosed using the American Thoracic Society diagnostic standards. There were a total of 200 (62.3%) pulmonary tuberculosis cases. Liquid assay with microscopic detection detected a significantly higher proportion of cases than LJ solid culture: 89.0% (95% confidence interval [CI], 84.7% to 93.3%) versus 77.0% (95% CI, 71.2% to 82.8%) (p = 0.0007). The median turn around time to diagnose tuberculosis was significantly shorter for micro broth culture than for the LJ solid culture, 9 days (interquartile range [IQR] 7-13), versus 21 days (IQR 14-28) (p<0.0001). The cost for micro broth culture (labor inclusive) in our study was US 11.35 per sample for the LJ solid culture. The liquid assay (micro broth culture) is an early, feasible, and inexpensive method for detection of pulmonary tuberculosis in resource limited settings
Does inter-vertebral range of motion increase after spinal manipulation? A prospective cohort study.
Background: Spinal manipulation for nonspecific neck pain is thought to work in part by improving inter-vertebral range of motion (IV-RoM), but it is difficult to measure this or determine whether it is related to clinical outcomes.
Objectives: This study undertook to determine whether cervical spine flexion and extension IV-RoM increases after a course of spinal manipulation, to explore relationships between any IV-RoM increases and clinical outcomes and to compare palpation with objective measurement in the detection of hypo-mobile segments.
Method: Thirty patients with nonspecific neck pain and 30 healthy controls matched for age and gender received quantitative fluoroscopy (QF) screenings to measure flexion and extension IV-RoM (C1-C6) at baseline and 4-week follow-up between September 2012-13. Patients received up to 12 neck manipulations and completed NRS, NDI
and Euroqol 5D-5L at baseline, plus PGIC and satisfaction questionnaires at follow-up. IV-RoM accuracy, repeatability and hypo-mobility cut-offs were determined. Minimal detectable changes (MDC) over 4 weeks were calculated
from controls. Patients and control IV-RoMs were compared at baseline as well as changes in patients over 4 weeks. Correlations between outcomes and the number of manipulations received and the agreement (Kappa) between palpated and QF-detected of hypo-mobile segments were calculated.
Results: QF had high accuracy (worst RMS error 0.5o) and repeatability (highest SEM 1.1o, lowest ICC 0.90) for
IV-RoM measurement. Hypo-mobility cut offs ranged from 0.8o to 3.5o. No outcome was significantly correlated with increased IV-RoM above MDC and there was no significant difference between the number of hypo-mobile segments in patients and controls at baseline or significant increases in IV-RoMs in patients. However, there was a modest and significant correlation between the number of manipulations received and the number of levels and directions whose IV-RoM increased beyond MDC (Rho=0.39, p=0.043). There was also no agreement between palpation and QF in identifying hypo-mobile segments (Kappa 0.04-0.06).
Conclusions: This study found no differences in cervical sagittal IV-RoM between patients with non-specific neck pain and matched controls. There was a modest dose-response relationship between the number of manipulations given and number of levels increasing IV-RoM - providing evidence that neck manipulation has a mechanical effect at segmental levels. However, patient-reported outcomes were not related to this
High-transition-temperature superconductivity in the absence of the magnetic-resonance mode
The fundamental mechanism that gives rise to high-transition-temperature
(high-Tc) superconductivity in the copper oxide materials has been debated
since the discovery of the phenomenon. Recent work has focussed on a sharp
'kink' in the kinetic energy spectra of the electrons as a possible signature
of the force that creates the superconducting state. The kink has been related
to a magnetic resonance and also to phonons. Here we report that infrared
spectra of Bi2Sr2CaCu2O(8+d), (Bi-2212) show that this sharp feature can be
separated from a broad background and, interestingly, weakens with doping
before disappearing completely at a critical doping level of 0.23 holes per
copper atom. Superconductivity is still strong in terms of the transition
temperature (Tc approx 55 K), so our results rule out both the magnetic
resonance peak and phonons as the principal cause of high-Tc superconductivity.
The broad background, on the other hand, is a universal property of the copper
oxygen plane and a good candidate for the 'glue' that binds the electrons.Comment: 4 pages, 3 figure
A MIQE-Compliant Real-Time PCR Assay for Aspergillus Detection
PMCID: PMC3393739This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
- …
