360 research outputs found

    Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples

    Get PDF
    Numerous studies are currently underway to characterize the microbial communities inhabiting our world. These studies aim to dramatically expand our understanding of the microbial biosphere and, more importantly, hope to reveal the secrets of the complex symbiotic relationship between us and our commensal bacterial microflora. An important prerequisite for such discoveries are computational tools that are able to rapidly and accurately compare large datasets generated from complex bacterial communities to identify features that distinguish them

    Revisiting soliton contributions to perturbative amplitudes

    Get PDF
    Open Access funded by SCOAP3. CP is a Royal Society Research Fellow and partly supported by the U.S. Department of Energy under grants DOE-SC0010008, DOE-ARRA-SC0003883 and DOE-DE-SC0007897. ABR is supported by the Mitchell Family Foundation. We would like to thank the Mitchell Institute at Texas A&M and the NHETC at Rutgers University respectively for hospitality during the course of this work. We would also like to acknowledge the Aspen Center for Physics and NSF grant 1066293 for a stimulating research environment

    Mineralization of sheep manure and its influence on lettuce production

    Get PDF
    Diversos resíduos orgânicos são utilizados na agricultura sem o adequado conhecimento da sua dinâmica de mineralização. Avaliou-se a mineralização de esterco de ovinos e sua influência na produção de alface. Utilizou-se o delineamento experimental de blocos ao acaso com três repetições. Foram utilizadas 25 t ha-1 como dose de esterco para cada um dos seguintes tratamentos: 1) esterco de ovinos que se alimentaram de feno de mandioca (PAM); 2) esterco de ovinos que se alimentaram de subproduto de ervilha (ERV); 3) esterco de ovinos que se alimentaram de feno de capim coast-cross (FCC); 4) esterco de ovinos que se alimentaram de subproduto de saccharina (SAC) e 5) solo sem aplicação de esterco (testemunha). Foi determinada semanalmente a respiração basal do solo, utilizada como indicador de mineralização da matéria orgânica. A massa fresca de alface foi avaliada como medida de produção. Os tratamentos ERV, FCC e SAC apresentaram ganhos de massa fresca na ordem de 68, 65 e 62% em relação à testemunha e de 43, 39 e 33% em relação ao PAM, respectivamente. A produção menor promovida pelo PAM, em relação às demais, pode ser explicada pela forma de mineralização da matéria orgânica que apresentou elevada respiração microbiana cinco dias após o transplantio, com acentuado declínio, nas medições subseqüentes, ao longo do ciclo da cultura. Os demais tratamentos apresentaram mineralização sincronizada com conseqüente aumento na produção de massa fresca. ____________________________________________________________________________________________________________ ABSTRACTSeveral organic wastes are used in agriculture with no precise knowledge about the mineralization dynamics of these materials. In this study the sheep manure mineralization and its influence on the lettuce production was evaluated. A randomized block design with three replications was used. Five treatments were studied using 25 t ha-1 as dose of manure: 1) sheep manure obtained from animals fed with cassava straw (PAM); 2) sheep manure obtained from animals fed with residue of pea crop (ERV); 3) sheep manure obtained from animals fed with Coast-Cross hay (FCC), 4) sheep manure obtained from animals fed with saccharin residue (SAC) and 5) soil without application of manure (control). Weekly the basal respiration was determined and used as an indicator of organic matter mineralization. Lettuce fresh mass was evaluated as a measure of production. Treatments ERV, FCC and SAC showed superior weight gains of 68, 65 and 62% compared to the control and 43, 39 and 33% compared to MAP, respectively. Lower production promoted by the MAP in relation to the other treatments can be explained by organic matter mineralization that showed a high microbial respiration five days after transplanting, with marked decline in subsequent measurements during the crop cycle. The other systems showed mineralization synchronized with the production increase of lettuce fresh mass

    A statistical toolbox for metagenomics: assessing functional diversity in microbial communities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 99% of bacteria in the environment that are recalcitrant to culturing have spurred the development of metagenomics, a culture-independent approach to sample and characterize microbial genomes. Massive datasets of metagenomic sequences have been accumulated, but analysis of these sequences has focused primarily on the descriptive comparison of the relative abundance of proteins that belong to specific functional categories. More robust statistical methods are needed to make inferences from metagenomic data. In this study, we developed and applied a suite of tools to describe and compare the richness, membership, and structure of microbial communities using peptide fragment sequences extracted from metagenomic sequence data.</p> <p>Results</p> <p>Application of these tools to acid mine drainage, soil, and whale fall metagenomic sequence collections revealed groups of peptide fragments with a relatively high abundance and no known function. When combined with analysis of 16S rRNA gene fragments from the same communities these tools enabled us to demonstrate that although there was no overlap in the types of 16S rRNA gene sequence observed, there was a core collection of operational protein families that was shared among the three environments.</p> <p>Conclusion</p> <p>The results of comparisons between the three habitats were surprising considering the relatively low overlap of membership and the distinctively different characteristics of the three habitats. These tools will facilitate the use of metagenomics to pursue statistically sound genome-based ecological analyses.</p

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes) are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand.</p> <p>Results</p> <p>The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (<b>RAMMCAP</b>) was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes".</p> <p>Conclusion</p> <p>RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from <url>http://tools.camera.calit2.net/camera/rammcap/</url>.</p

    Toxic but Drank: Gustatory Aversive Compounds Induce Post-ingestional Malaise in Harnessed Honeybees

    Get PDF
    BACKGROUND: Deterrent substances produced by plants are relevant due to their potential toxicity. The fact that most of these substances have an unpalatable taste for humans and other mammals contrasts with the fact that honeybees do not reject them in the range of concentrations in which these compounds are present in flower nectars. Here we asked whether honeybees detect and ingest deterrent substances and whether these substances are really toxic to them. RESULTS: We show that pairing aversive substances with an odor retards learning of this odor when it is subsequently paired with sucrose. Harnessed honeybees in the laboratory ingest without reluctance a considerable volume (20 µl) of various aversive substances, even if some of them induce significant post-ingestional mortality. These substances do not seem, therefore, to be unpalatable to harnessed bees but induce a malaise-like state that in some cases results in death. Consistently with this finding, bees learning that one odor is associated with sugar, and experiencing in a subsequent phase that the sugar was paired with 20 µl of an aversive substance (devaluation phase), respond less than control bees to the odor and the sugar. Such stimulus devaluation can be accounted for by the malaise-like state induced by the aversive substances. CONCLUSION: Our results indicate that substances that taste bitter to humans as well as concentrated saline solutions base their aversive effect on the physiological consequences that their ingestion generates in harnessed bees rather than on an unpalatable taste. This conclusion is only valid for harnessed bees in the laboratory as freely-moving bees might react differently to aversive compounds could actively reject aversive substances. Our results open a new possibility to study conditioned taste aversion based on post-ingestional malaise and thus broaden the spectrum of aversive learning protocols available in honeybees

    Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets.</p> <p>Methods</p> <p>The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM).</p> <p>Results</p> <p>A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM.</p> <p>Conclusion</p> <p>The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.</p

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Soil foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland

    Get PDF
    Animals that modify their physical environment by foraging in the soil can have dramatic effects on ecosystem functions and processes. We compared bacterial and fungal communities in the foraging pits created by bilbies and burrowing bettongs with undisturbed surface soils dominated by biocrusts. Bacterial communities were characterized by Actinobacteria and Alphaproteobacteria, and fungal communities by Lecanoromycetes and Archaeosporomycetes. The composition of bacterial or fungal communities was not observed to vary between loamy or sandy soils. There were no differences in richness of either bacterial or fungal operational taxonomic units (OTUs) in the soil of young or old foraging pits, or undisturbed soils. Although the bacterial assemblage did not vary among the three microsites, the composition of fungi in undisturbed soils was significantly different from that in old or young foraging pits. Network analysis indicated that a greater number of correlations between bacterial OTUs occurred in undisturbed soils and old pits, whereas a greater number of correlations between fungal OTUs occurred in undisturbed soils. Our study suggests that digging by soil-disturbing animals is likely to create successional shifts in soil microbial and fungal communities, leading to functional shifts associated with the decomposition of organic matter and the fixation of nitrogen. Given the primacy of organic matter decomposition in arid and semi-arid environments, the loss of native soil-foraging animals is likely to impair the ability of these systems to maintain key ecosystem processes such as the mineralization of nitrogen and the breakdown of organic matter, and to recover from disturbance
    corecore