31 research outputs found

    HST/WFC3 grism observations of z ∼ 1 clusters : the cluster versus field stellar mass-size relation and evidence for size growth of quiescent galaxies from minor mergers

    Get PDF
    Minor mergers are thought to be responsible for the size growth of quiescent field galaxies with decreasing redshift. We test this hypothesis using the cluster environment as a laboratory. Satellite galaxies in clusters move at high velocities, making mergers between them rare. The stellar mass-size relation in 10 clusters and in the field is measured and compared at z similar to 1. Our cluster sample contains 344 spectroscopically confirmed cluster members with Gemini/Gemini Multi-Object Spectrographs and 182 confirmed with Hubble Space Telescope/Wide Field Camera 3 G141 grism spectroscopy. On average, quiescent and star-forming cluster galaxies are smaller than their field counterparts by (0.08 +/- 0.04) and (0.07 +/- 0.01) dex, respectively. These size offsets are consistent with the average sizes of quiescent and star-forming field galaxies between 1.2 <= z <= 1.5, implying the cluster environment has inhibited size growth between this period and z similar to 1. The negligible differences measured between the z similar to 0 field and cluster quiescent mass-size relations in other works imply that the average size of quiescent cluster galaxies must rise with decreasing redshift. Using a toy model, we show that the disappearance of the compact cluster galaxies might be explained if, on average, similar to 40 per cent of them merge with their brightest cluster galaxies (BCGs) and similar to 60 per cent are tidally destroyed into the intracluster light (ICL) between 0 <= z <= 1. This is in agreement with the observed stellar mass growth of BCGs between 0 <= z <= 1 and the observed ICL stellar mass fraction at z similar to 0. Our results support minor mergers as the cause for the size growth in quiescent field galaxies, with cluster-specific processes responsible for the similarity between the field and cluster quiescent mass-size relations at low redshift

    Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy

    Get PDF
    Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes

    Prognostic Factors of Long Term Disability Due to Mental Disorders: A Systematic Review

    Get PDF
    Introduction In the past few decades, mental health problems have increasingly contributed to sickness absence and long-term disability. However, little is known about prognostic factors of return to work (RTW) and disability of persons already on sick leave due to mental health problems. Understanding these factors may help to develop effective prevention and intervention strategies to shorten the duration of disability and facilitate RTW. Method We reviewed systematically current scientific evidence about prognostic factors for mental health related long term disability, RTW and symptom recovery. Searching PubMed, PsycINFO, Embase, Cinahl and Business Source Premier, we selected articles with a publication date from January 1990 to March 2009, describing longitudinal cohort studies with a follow-up period of at least 1 year. Participants were persons on sick leave or receiving disability benefit at baseline. We assessed the methodological quality of included studies using an established criteria list. Consistent findings in at least two high quality studies were defined as strong evidence and positive findings in one high quality study were defined as limited evidence. Results Out of 796 studies, we included seven articles, all of high methodological quality describing a range of prognostic factors, according to the ICF-model categorized as health-related, personal and external factors. We found strong evidence that older age (>50 years) is associated with continuing disability and longer time to RTW. There is limited evidence for the association of other personal factors (gender, education, history of previous sickness absence, negative recovery expectation, socio-economic status), health related (stress-related and shoulder/back pain, depression/anxiety disorder) and external i.e., job-related factors (unemployment, quality and continuity of occupational care, supervisor behavior) with disability and RTW. We found limited evidence for the association of personal/external factors (education, sole breadwinner, partial/full RTW, changing work tasks) with symptom recovery. Conclusion This systematic review identifies a number of prognostic factors, some more or less consistent with findings in related literature (mental health factors, age, history of previous sickness absence, negative recovery expectation, socio-economic status, unemployment, quality and continuity of occupational care), while other prognostic factors (gender, level of education, sole breadwinner, supervisor support) conflict with existing evidence. There is still great need for research on modifiable prognostic factors of continuing disability and RTW among benefit claimants with mental health problems. Recommendations are made as to directions and methodological quality of further research, i.e., prognostic cohort studies

    Electrostatic Effects in the Folding of the SH3 Domain of the c-Src Tyrosine Kinase: pH-Dependence in 3D-Domain Swapping and Amyloid Formation

    Get PDF
    The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.This research was funded by the Spanish Ministry of Science and Innovation and Ministry of Economy and Competitiveness and FEDER (EU): BIO2009-13261-C02-01/02 (ACA); BIO2012-39922-C02-01/02 (ACA); CTQ2013-4493 (JLN) and CSD2008-00005 (JLN); Andalusian Regional Government (Spain) and FEDER (EU): P09-CVI-5063 (ACA); and Valentian Regional Government (Spain) and FEDER (EU): Prometeo 2013/018 (JLN). Data collection was supported by European Synchrotron Radiation Facility (ESRF), Grenoble, France: BAG proposals MX-1406 (ACA) and MX-1541 (ACA); and ALBA (Barcelona, Spain) proposals 2012010072 (ACA) and 2012100378 (ACA)

    How does it feel to act together?

    Get PDF
    This paper on the phenomenology of joint agency proposes a foray into a little explored territory at the intersection of two very active domains of research: joint action and sense of agency. I explore two ways in which our experience of joint agency may differ from our experience of individual agency. First, the mechanisms of action specification and control involved in joint action are typically more complex than those present in individual actions, since it is crucial for joint action that people coordinate their plans and actions. I discuss the implications that these coordination requirements might have for the strength of the sense of agency an agent may experience for a joint action. Second, engagement in joint action may involve a transformation of agentive identity and a partial or complete shift from a sense of self-agency to a sense of we-agency. I discuss several factors that may contribute to shaping our sense of agentive identity in joint action

    Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]

    Get PDF
    Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI+], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers

    New approaches in the diagnosis and treatment of latent tuberculosis infection

    Get PDF
    With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence
    corecore