24 research outputs found

    Ecological genetics of inbreeding, outbreeding and immunocompetence in Ranid frogs

    Get PDF
    Using artificial fertilization, I crossed frogs from different populations to evaluate fitness consequences for the offspring from an inbreeding-outbreeding perspective, and to evaluate quantitative genetic effects on immunocompetence against a fungal pathogen (Saprolegnia). Crosses between closely situated populations of different sizes generated contrasting results for the effects of outbreeding on offspring traits between populations and life history stages, emphasizing the importance of epistatic effects and the difficulties of relying on generalizations when making conservation decisions (e.g., regarding translocations). Experimental infection of frog eggs from six populations with Saprolegnia fungus showed a significant family effect on the degree of infection of eggs and embryos, in particular at lower fertilization success and with a significant temperature × population interaction effect. A paternal genetic effect on fungus resistance was found using a half-sib split design. Furthermore, relatively more eggs were infected when fertilized by sperm from the same, in contrast with a different population. However, there was no evidence for a stronger effect in isolated island populations. Although the mechanistic underpinnings remain unknown, these results suggest substantial levels of genetic variation in resistance to Saprolegnia in natural populations within and among populations. We also found that pre-hatching exposure to Saprolegnia dramatically reduced the size at metamorphosis in the absence of further exposure to the fungus, possible as a delayed effect of impaired embryonic development. However, in contrast to some other amphibians, induced hatching in response to Saprolegnia could not be confirmed. In conclusion, the results suggest that frog populations are genetically diverse even at small geographic scale with frequently strong and unpredictable consequences of in- and outbreeding for the response to stressors

    Anuran responses to spatial patterns of agricultural landscapes in Argentina

    Get PDF
    Context: Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure. Objectives: We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales. Methods: We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models. Results: Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes. Conclusions: Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.Facultad de Ciencias ExactasCentro de Investigaciones del Medioambient

    Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach

    Get PDF
    Habitat destruction and fragmentation are known to strongly affect dispersal by altering the quality of the environment between populations. As a consequence, lower landscape connectivity is expected to enhance extinction risks through a decrease in gene flow and the resulting negative effects of genetic drift, accumulation of deleterious mutations and inbreeding depression. Such phenomena are particularly harmful for amphibian species, characterized by disjunct breeding habitats. The dispersal behaviour of amphibians being poorly understood, it is crucial to develop new tools, allowing us to determine the influence of landscape connectivity on the persistence of populations. In this study, we developed a new landscape genetics approach that aims at identifying land-uses affecting genetic differentiation, without a priori assumptions about associated ecological costs. We surveyed genetic variation at seven microsatellite loci for 19 Alpine newt (Mesotriton alpestris) populations in western Switzerland. Using strips of varying widths that define a dispersal corridor between pairs of populations, we were able to identify land-uses that act as dispersal barriers (i.e. urban areas) and corridors (i.e. forests). Our results suggest that habitat destruction and landscape fragmentation might in the near future affect common species such as M. alpestris. In addition, by identifying relevant landscape variables influencing population structure without unrealistic assumptions about dispersal, our method offers a simple and flexible tool of investigation as an alternative to least-cost models and other approaches

    Delineating fine-scale genetic units in amphibians: probing the primacy of ponds

    No full text
    The population structure of pond-breeding amphibians is shaped by their distinct breeding foci, but it is unclear to what extent this is reflected in the fine-scale distribution of genetic diversity. We used microsatellite genotypes to investigate the genetic signatures of 24 populations of European newts, Triturus cristatus and T. marmoratus, inhabiting 21 ponds in a confined study area (7.5 · 3.5 km) in western France. Employing a Bayesian clustering approach based on individual genotypes that minimises departures from Hardy–Weinberg equilibrium and linkage disequilibrium, no evidence was found for within-pond substructuring. Subjecting all sampled ponds simultaneously to this procedure revealed a clear signal of partitioning, with the most likely number of clusters however below the actual number of ponds (seven in T. cristatus, three in T. marmoratus). A more hierarchical Bayesian approach, with pond as analysis unit, was achieved to separate ponds from genetically more meaningful units, and reduced the T. cristatus populations to 11 clusters, and the T. marmoratus populations to five clusters. We were unable to specify a minimum nearest-neighbour distance where ponds are separate units, probably due to both historical and current demographic processes. The implications for strategies to manage and conserve endangered amphibians in human-altered landscapes are discussed

    The effect of aquatic and terrestrial habitat characteristics on occurrence and breeding probability in a montane amphibian: insights from a spatially explicit multistate occupancy model

    Full text link
    Understanding species distribution and predicting range shifts are major goals of ecology and biogeography. Obtaining reliable predictions of how species distribution might change in response to habitat change requires knowledge of habitat availability, occupancy, use for breeding, and spatial autocorrelation in these parameters. Amphibians in alpine areas provide an excellent model system for disentangling habitat drivers of occupancy from that of breeding while explicitly accounting for spatial autocorrelation. We focused on the widespread common frog (Rana temporaria) inhabiting alpine lakes in the Southern Carpathians, Romania. We used single season multistate occupancy models developed to account for imperfect detection and spatial autocorrelation to estimate the occupancy and breeding probabilities and to evaluate their response to habitat characteristics. We found that frogs do not occur in all water bodies [occupancy probability: 0.697; 95% credible interval (0.614, 0.729)] and do not breed in a substantial proportion of water bodies where they occur [breeding probability conditional on occupancy: 0.707; 95% credible interval (0.670, 0.729)]. Habitat characteristics explain water body occupancy but not breeding probability; and altitude, water body surface area, water body sinuosity and permanency, presence of invertebrates, and grazing along the banks all had positive effects on occupancy. We also detected strong spatial autocorrelation in occupancy and breeding probabilities. Thus, our results indicate that habitat choice by montane amphibians is influenced by both spatial autocorrelation and habitat characteristics. Because spatial autocorrelations matter and because the presence of adults is not the same as the presence of a reproducing population, it will be difficult to predict the effects of habitat change on high altitude amphibian populations

    On the restoration of the last relict population of a dragonfly Urothemis edwardsii Selys (Libellulidae: Odonata) in the Mediterranean

    No full text
    The restoration of endangered relict populations is challenging in conservation biology because they require specific environmental conditions within an inhospitable regional climate. Urothemis edwardsii Selys is the most endangered dragonfly in the Mediterranean with only one known relict small population (Lac Bleu) left in Northeast Algeria. With the absence of successful (re-) colonization over the last two decades, the restoration of the species became a top priority. To improve the status of the species in Northeast Algeria, we carried out a reintroduction and translocation scheme during 2011–2015 and assessed the changes in distribution and population size. Our restoration plan led to the emergence of three populations of which one was restored (Lac Noir), one resulted from successful translocation (Lac Tonga Northeast), and one established after successful colonization (Lac Tonga Southwest). In three localities (Lac Noir, Lac Tonga Northeast, and Lac Tonga Southwest), signs of population growth were observed, whereas no significant trend in the source population (Lac Bleu) was detected. A new population (El Graeate) was also recorded in 2015, but its origin is uncertain. Capture-mark-recapture on adults conducted recapture rates and no sign of dispersal between the two sites. Dispersal capacity of the species and conservation implications of adult distribution are discussed. This study highlights the importance of using biological indicators in selecting host habitats for the restoration of critically threatened populations
    corecore