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Abstract

Context Amphibians are declining worldwide and

land use change to agriculture is recognized as a

leading cause. Argentina is undergoing an agricultur-

alization process with rapid changes in landscape

structure.

Objectives We evaluated anuran response to land-

scape composition and configuration in two land-

scapes of east-central Argentina with different degrees

of agriculturalization. We identified sensitive species

and evaluated landscape influence on communities

and individual species at two spatial scales.

Methods We compared anuran richness, frequency

of occurrence, and activity between landscapes using

call surveys data from 120 sampling points from 2007

to 2009. We evaluated anuran responses to landscape

structure variables estimated within 250 and 500-m

radius buffers using canonical correspondence analy-

sis and multimodel inference from a set of candidate

models.

Results Anuran richness was lower in the landscape

with greater level of agriculturalization with reduced

amount of forest cover and stream length. This pattern
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was driven by the lower occurrence and calling

activity of seven out of the sixteen recorded species.

Four species responded positively to the amount of

forest cover and stream habitat. Three species

responded positively to forest cohesion and negatively

to rural housing. Two responded negatively to crop

area and diversity of cover classes.

Conclusions Anurans within agricultural landscapes

of east-central Argentina are responding to landscape

structure. Responses varied depending on species and

study scale. Life-history traits contribute to responses

differences. Our study offers a better understanding of

landscape effects on anurans and can be used for land

management in other areas experiencing a similar

agriculturalization process.

Keywords Amphibian conservation � Agriculture
expansion and intensification � Entre Rios � Espinal �
Landscape structure � Habitat loss � Forest
connectivity � Landscape heterogeneity

Introduction

World population growth and food demand is leading

to an agriculturalization process in many countries,

which involves rapid changes in land use and

promotes environmental degradation (Rabinovich

and Torres 2004; Young 2006). This process is

characterized by the expansion and intensification of

land production areas that results in landscapes with

reduced natural vegetation distributed in remnant

patches and greater technology use to enhance

production yields (Viglizzo et al. 2001; Aizen et al.

2009; Oesterheld 2008).

In Argentina, agriculture expansion and intensifi-

cation occurs primarily in the Pampas and Espinal eco-

regions (Viglizzo et al. 2003), which are the most

productive regions in the country. Natural vegetation,

such as forests and grasslands are reduced and

replaced by row crop production expansion (Tassi

et al. 2011). Although there are several important

crops in these regions, soybean production is the main

driver of the agriculturalization process (Young 2006)

and the dominant type of row crop (FAOSTAT 2014;

SAGPYA 2014).

Therefore, agricultural landscapes show a lower

land-use diversity and heterogeneity (Aizen et al. 2009).

Also, greater input of agrochemical products to enhance

production is observed (Pérez Leiva and Anastasio

2003; Zaccagnini et al. 2007a; Bernardos and Zaccag-

nini 2011; CASAFE 2014). As a consequence, the

composition and spatial configuration of agricultural

landscapes are changing, altering the integrity and

sustainability of agroecosystems (Zaccagnini et al.

2007b; De la Fuente and Suárez 2008; Aizen et al.

2009) and resulting in loss of biodiversity in the region

(Schrag et al. 2009; Gavier-Pizarro et al. 2012).

Biodiversity conservation is an essential consider-

ation for sustainable agroecosystems (Altieri 1999).

Of special concern in agroecosystems are amphibians,

which play key ecological roles in ecosystem func-

tioning (Seale 1980; Wyman 1998; Marcot and

Vander Heyden 2001). In agroecosystems, adult

stages are valuable as biological pest controllers for

agriculture production (Attademo et al. 2005), and are

considered good biological indicators because they

respond quickly to environmental change (EPA 2002).

Many amphibian species are declining worldwide and

habitat loss, fragmentation and degradation by agri-

culture have been recognized as leading factors in

several countries (Bishop and Pettit 1992; Sparling

2002). In Argentina, these factors are also expected to

affect amphibian conservation in agroecosystems, but

effects of landscape change through agriculturaliza-

tion are still not clear. Agriculturalization generates

landscapes with varying levels of transformation. By

comparing these different landscapes, we can better

understand how amphibians respond to agricultural

expansion and intensification by identifying sensitive

species and key factors that determine their persis-

tence (Pulliam 1988; Opdam 1990).

Many amphibians have a biphasic life cycle

requiring both aquatic and terrestrial natural habitats
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for reproduction, larval development, feeding, hiber-

nation and dispersal processes (Heyer et al. 1994).

Thus, the availability, quality and connectivity of

required habitats are fundamental for their persistence

in agroecosystems. Recent international research on

the relationships between amphibians and landscape

attributes indicate that habitat loss and fragmentation

exert strong negative effects on amphibians (Cushman

2006). Forest area surrounding ponds (Knutson et al.

1999; Houlahan et al. 2000; Herrmann et al. 2005),

proximity of ponds to forests and distance among

ponds (Guerry and Hunter 2002; Veysey et al. 2011) as

well as connectivity of both ponds and forested

habitats (Hecnar and M’Closkey 1996; Marsh and

Trenham 2001; Rothermel 2004) were identified as

key predictors of regional viability of amphibian

populations. Several studies demonstrate that local

and landscape changes resulting from agricultural

expansion have negative effects on amphibian diver-

sity (Babbitt et al. 2003; Silva et al. 2012). Further,

crop expansion (Bonin et al. 1997; Mensing et al.

1998; Atauri and de Lucio 2001) and urban develop-

ment (Carr and Fahrig 2001; Gagné and Fahrig 2007)

can reduce amphibian richness and abundance.

Amphibian species respond differentially to land-

scape change in agricultural landscapes. Both negative

and positive effects have been observed at species and

guild levels (Bascompte and Solé 1996; Knutson et al.

1999; Joly et al. 2001). These studies suggest that

amphibian response to landscape composition and

configuration could depend on the interaction between

species’ life-history traits and the level of agricultural

expansion. Anurans are the most diverse order of

amphibians and include species with a variety of

lifestyles from fully aquatic, semi-aquatic (aquatic and

terrestrial), terrestrial, arboreal, and fossorial (Dodd

2010). Fully aquatic species may be more affected by

direct changes to ponds than semi-aquatic or more

terrestrial species that are not restricted to ponds and

can move to find better habitat or shelter (Peltzer et al.

2006). These local scale impacts on reproductive

habitat may have a stronger influence on species with

low dispersal and low reproductive rates given their

limited perception of space, low ability to colonize

distant breeding sites, and thus, low population

recruitment (Quesnelle et al. 2014). Alternatively,

forest-dependent anurans may show greater sensitivity

to forest habitat loss than habitat-generalist or open

land species (Basso 1990). Also, more mobile forest-

dependent anurans may show greater sensitivity to

forest loss and fragmentation in the surrounding

landscape matrix (Gibbs 1998) than highly mobile

habitat-generalist species or less mobile forest-depen-

dent species. Thus, it is important to study agricultural

effects on anurans at the community and species levels

at multiple scales to better understand the differential

response of each species (Cushman 2006).

Our aim was to evaluate the effect of agricultural-

ization and resulting landscape structure on anurans in

Argentina. Thus, we compared anuran responses

patterns between two agricultural landscapes with

different levels of agriculture expansion and intensi-

fication and evaluated the relation to landscape

composition and configuration. We used these two

agricultural landscapes as a proxy to represent a

gradient of landscapes changes occurring during the

agriculturalization process. Considering anuran life

history traits mentioned above, we predicted the

following relationships: (1) anuran richness, species

frequency of occurrence and level of activity (anuran

response variables) would be lower in highly trans-

formed landscapes, (2) anuran response variables

would be positively associated with landscapes having

closer proximity of water bodies, greater amount of

forest cover, greater proximity and connectivity of

forest habitat patches and increased landscape hetero-

geneity, and conversely, negatively associated with

greater row-crop production area and rural/urban

housing density and proximity, and (3) individual

species would show differential sensitivity to the

agriculturalization process and show different associ-

ations to a different set of landscape variables based on

their specific habitat requirements and life history

traits.

Methods

Study area

We selected two primarily agricultural landscapes of

900 km2 near the towns of Crespo (32�10S, 60�170W)

and Cerrito (31�40S, 60�10W), in the west-central part

of Entre Rios province, east Argentina (Fig. 1). These

areas belong to the Espinal ecoregion where rapid

agricultural expansion is occurring. The original

vegetation of these landscapes are semi-xerophytic

forests, characterized by tree species such as Prosopis
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affinis, Acacia caven, Geoffroea decorticans, Celtis

tala and Schinus longifolia, intermixed with grass-

lands dominated by Stipa spp. and Paspalum dilata-

tum (Cabrera 1971; Sabattini et al. 1999, 2008). The

climate is temperate with mean annual temperatures

and precipitations ranging from 18 to 20 �C and 800 to

1000 mm respectively.

Landscapes represent two stages of the agricultur-

alization process and differ in the amount and

connectivity of forests, degree of spatial heterogeneity

(i.e. presence of different elements in the landscape),

and environmental quality of aquatic and forest

habitats as defined by their degree of contamination

or composition and structure of their vegetation cover

(Calamari et al. 2006; Sabattini et al. 2009; Tassi et al.

2011). More intensive agriculture occurs around

Crespo, an area with a longer history of agricultural

use resulting in severe landscape simplification due to

the expansion of row crops such as soybean, wheat,

corn, and sunflower, planted pastures, and urban and

large-rural settlements. Native forest cover has been

greatly reduced and almost eliminated from this

landscape (Sabatini et al. 2010). Forest environments

consist primarily of remnant patches of native forest

surrounding waterbodies, and small patches of exotic

species planted for house landscaping and cattle

shading. Less intensive agriculture occurs in the

Cerrito landscape. This landscape has greater land-

cover heterogeneity, forest connectivity and more and

larger patches of native semi-xerophytic forests. Also

most hedgerows, erosion control terraces and riparian

strips are covered by native forest compared to those in

Crespo dominated by herbaceous vegetation (Cala-

mari et al. 2006). The hydrologic network is dense in

both landscapes and several waterbodies with different

hydrologic regimes are present, including streams (the

most common), rivers, lagoons, temporary natural

ponds, permanent artificial ponds, and roadside

ditches.

Anuran survey

Call surveys are a cost-efficient means of assessing

anuran distributions throughout large areas and are

commonly used in large-scale monitoring projects

(Bishop et al. 1997; Bonin et al. 1997; LePage et al.

1997). We used the anuran call catalog of Straneck

et al. (1993) and the North American Amphibian

Monitoring Program (NAAMP) protocol (Weir and

Mossman 2005) to conduct frog and toad call surveys

at 60 sampling points located systematically on six

transects per landscape placed on secondary roads

(N = 120) (Fig. 2). Call surveys were performed five

times per point within 7-day sampling periods (two

transects per night) across 3 years, beginning from

spring 2007–summer 2009. In the southern hemi-

sphere, most anurans breed from September to March

(i.e. spring and summer seasons), so sampling periods

followed rain events during months with higher

amphibian activity, i.e. October–November and

February–March. Unidentified calls were resolved by

visual observations of the calling individual at the

sampling point when possible.

We located sampling points at least 800 m apart to

ensure spatial independence of amphibian detection

(Semlitsch and Bodie 2003). Three observers con-

ducted call surveys but the main observer was the

same among sampling periods to minimize differences

Fig. 1 Study area located in the west central portion of Entre

Rı́os province in Argentina. Selected landscapes with less

(a) and more (b) agriculture expansion and intensification

located near Cerrito (31�40S, 60�10W) and Crespo Towns

(32�10S, 60�170W) respectively. Sampling transects are shown

as black lines within study areas
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in detection abilities. Call surveys lasted 3 min and

were conducted after sunset and finished by midnight

(Shirose et al. 1997; Gooch et al. 2006). Our sampling

scheme did not allow us to meet the ‘closed popula-

tion’ assumption necessary to calculate detection

probabilities and occupancy because sampling

occurred across years and migration and/or coloniza-

tion processes might take place at sampled points

(MacKenzie et al. 2003; Mackenzie and Royle 2005).

Potential biases in occurrence estimation could be

introduced by using naı̈ve occurrence. However, we

assert that five sampling periods per site within 7 days

reduced bias. Thus, we obtained presence-absence

data for each anuran species at each sampling point by

pooling data from all sampling periods to calculate

species richness, composition, frequency of occur-

rence and activity level. The presence of two pairs of

species: (1) Physalaemus biligonigerus and P. albono-

tatus and (2) Dendropsophus nanus and D. sanborni

were grouped for this study as Physalaemus spp. and

Dendropsophus spp. respectively, because their calls

are too similar to distinguish between in the field. We

calculated species richness as the accumulated number

of detected species after five surveys at each point. We

used the proportion of sampling points occupied as a

measure of each species frequency of occurrence

within each landscape (i.e., high, moderate, and low

frequency occurrence). We used the maximum activ-

ity-calling index value registered per sampling point

after five surveys as an index of relative abundance of

males (Weir and Mossman 2005). The activity calling

index was 0 if no individual called, 1 when we could

count the number of calling individuals, 2 if we could

distinguish calls but they overlapped, and 3 when we

detected a chorus of calling individuals. Maximum

activity-calling index of 3 also implies breeding

activity. Anuran richness and species presence-ab-

sence data at the sampling point were used to model

their relationship with landscape structure variables.

Only species detected by call surveys in at least 15 %

of total sampling points in at least one of the studied

landscapes were considered for presence-absence

modelling.

Landscape analysis and explanatory variables

We used a Landsat satellite image obtained from a

fusion process of one multispectral Landsat TM image

of 30 mof spatial resolution (Path 226-Row82 January

2007, including bands 1–5 and 7) and the panchromatic

band from a Landsat ETM ? image of 15 m of spatial

resolution (January 2003) to increase the spatial

resolution (Pohl and Van Genderen 1998; Calamari

et al. 2006) for landscape analysis (Fig. 2). Those

images were downloaded from INPE web site (Brazil-

ian National Institute for Space Research). Before the

fusion process the images were geometrically cor-

rected using a first degree polynomial model because

the topography of the study area is flat plain or with

smooth undulations. Also, images were orthorectified

using a digital elevation model (DEM) and nearest

neighbor as resample method. Subsequently, we used

Principal Component as a method for fusion process

with nearest neighbor as resampling technique.

The resulting image was then classified using the

parametric supervised classification algorithm maxi-

mum likelihood. Nine terrestrial land cover types were

identified, and classification was validated with 100

points per land cover type randomly selected using

Quickbird images (available in GoogleEarth TM,

http://earth.google.com) and ground sampling (Con-

galton and Green 2009). Any pixel clump smaller than

0.5 ha was considered a classification artifact and was

eliminated from the classified image. Overall classi-

fication accuracy was 82 % and the most misclassified

cover type was corn (Supplementrary material

Appendix 1). We grouped the nine land cover types

into four classes: (1) row crops (soybean, corn, sun-

flower and sorghum), (2) forests, (3) grasslands, pas-

tures and harvested fields with stubble cover, and (4)

urban areas, roads, bare ground and harvested fields

with no stubble cover (Fig. 2). The completed process

was carried out in ERDAS imagine 9.2 (2008).

We established a 250 and 500-m buffer around each

sampling point, and calculated landscape composition

and configuration variables using FRAGSTAT (ver-

sion 3.3, McGarigal et al. 2012) (Fig. 2, Supplemen-

trary material Appendix 2). We selected these buffer

sizes to include core terrestrial habitat and migration

distances registered for anurans that range from 205 to

360 m (Semlitsch and Bodie 2003). Within each

buffer, we calculated the Shannon diversity classes

Index (SHDI) as a measure of landscape heterogene-

ity, total cover area of row crops (CA1) as a measure of

row-crop production level, total forest cover (CA2),

and number (NP2), cohesion (COHES2), mean area

(AREA2) and mean euclidean distance (ENN2) of

Landscape Ecol (2016) 31:2485–2505 2489
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forest patches, as indicator of forested habitat loss and

fragmentation for anurans.

To quantify the availability and proximity of

potential aquatic breeding areas, we calculated the

total number of different water bodies (WB), total

length of stream sections (STREAM) within each

buffer, and the distance to the nearest water body from

the sampling site (DISTWB). We also measured rural-

housing influence by quantifying total number of rural

establishments, i.e. rural houses, within each buffer

(RE) and distance to the nearest rural establishment

(DISTRE). Visual recognition and quantification of

these elements was performed using Quickbird

imagery available through the Google Earth site

(http://earth.google.com) using QGIS 2.0 (QGIS

Development Team 2012) since most water bodies

and individual rural establishments could not be

defined in the classified Landsat ETM ? image.

Landscape structure and anuran diversity

comparison between landscapes

To evaluate landscape structure and anuran status

differences between the two landscapes, we compared

landscape variables measured at two spatial scales

(250 and 500 m), species richness and level of activity

recorded at the sampling point using unpaired t-tests

(a = 0.01). To compare each species frequency of

occurrence between the landscapes, we used Chi

square (v2) tests. Statistical assumptions of normality,

homoscedasticity and data independence were evalu-

ated and met.

Fig. 2 Land cover classification of a Landsat TM image around (a) Cerrito and (b) Crespo towns showing distribution of sampling

transects and points with 250–500 buffer areas
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Response of anurans to landscape structure

We explored the association of each species presence to

landscape structure variables using canonical corre-

spondence analysis in R using vegan package (R

Development Core Team 2013) to group species based

on similar responses to the landscape structure (Legen-

dre and Legendre 1998). We used univariate regression

analyses to explore the relationship of species presence-

absence and sampling point species richness (response

variables) relationship with each landscape variable.

We examined the correlation among landscape

explanatory variables by Pearson tests at each scale of

analysis using a tolerance level of r = 0.7. Correlated

variables with less statistical significance were discarded

(Belsley et al. 1980). AREA2was highly correlated with

CA2 (r = 0.981) as well as WB and DISTWB

(r = 0.705) at the 250 m-scale. AREA2 was also

correlated with CA2 at 500 m (r = 0.946). Thus, we

discarded AREA2 at both scales andWB at 250 m from

further analyses. Final variables to include in further

analyses were selected according to correlation analyses

and the strength of their fit obtained by the univariate

regression analysis with each response variable.

We analyzed anuran relationship with landscape

composition and configuration at two spatial scales by

fitting generalized linear mixed models for anuran

richness and species presence in R version 3.2.1

(glmmML package, R Development Core Team

2013). Landscape and sampling transect entered the

model as random effects (Zuur et al. 2009).Wemodeled

richness as a poisson process (i.e. counts), and species

presence as a binomial process, i.e. logistic regression.

Species presence modeling was run only for the species

whose frequency of occurrence differed between the

landscapes but had at least 15 % of sampling points

occupied within any of the studied landscapes.

We created a candidate set of a priori models for

richness and species presence data using ecologically

meaningful landscape variables at each scale

(Table 1). Landscape variables were standardized

before modeling. As we have a limited knowledge of

the biology and ecology of several of the analyzed

species, we fit the same set of models for all the species

trying to represent all plausible relationships between

anurans and landscape structure.

We used the second-order Akaike Information

Criterion (AICc, recommended when n/K\ 40,

where n is the sample size and K is the number of

estimated parameters) and Akaike weights (wi) to

choose best-fitting models from the candidate set of

models (Burnham and Anderson 1998; Anderson et al.

2000; Burnham andAnderson 2001). The AIC belongs

to a family of model selection criteria which consider

model fit as well as complexity, and permits the

simultaneous comparison of multiple models (Johnson

and Omland 2004). AIC values reflect the amount of

‘‘lost information’’ when a model is used to approx-

imate conceptual reality. Consequently, the model

with the lowest AIC value is selected as the best model

(Burnham and Anderson 1998). When differences

between AIC values are small (i.e., less than 2 AIC

units), Akaike weights can be used as a measure of the

‘‘weight of evidence’’ in favor of each model. Akaike

weights are interpreted as the approximate probability

that model i is the best-fitting model in the set of

models being considered (Anderson et al. 2000).

To evaluate the effect of landscape composition and

configuration, we used multi-model inference or

‘‘model averaging’’ (Burnham and Anderson

1998, 2001). For richness and individual species, we

obtained model coefficient averages, interpreted as the

average effects of each landscape predictor variable,

weighted by Akaike weights. These model averages

were obtained from the ‘‘confidence set’’ of models

which was defined as those with less than 2 AIC units

of difference with the best model (Burnham and

Anderson 1998, 2001). Model selection parameters

were calculated in R using MuMIn package (R

Development Core Team 2013).

Results

Landscape composition and configuration

Less intensified landscape near Cerrito showed sig-

nificantly greater forest cover (CA2) and mean area

(AREA2), number (NP2) and cohesion (COHES2) of

patches as well as lower cover of row crops (CA1) than

the most intensified landscape found near Crespo at

both spatial scales (Table 2). Density of rural estab-

lishments (RE) within 250 m, their proximity (DIS-

TRE) and mean euclidean nearest-neighbour distance

of forest patches (ENN2) within 500 m, also differed

between landscapes, being greater in the more inten-

sified landscapes around Crespo. The diversity of

cover classes (SHIDI), total number of water bodies
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(WB), total length of stream sections (STREAM) and

distance to closest water bodies (DISTWB) did not

differ between landscapes at either scale.

Anuran species presence, level of activity,

and richness

We confirmed the presence of 18 species in the less

intensified agricultural landscape near Cerrito area and

15 species in the more intensified landscape near

Crespo by call surveys (Table 3). Physalaemus

riograndensis and S. acuminatus were not detected

in Crespo area and the presence of P. albonotatus and

Dendropsophus nanus was uncertain in this area. The

last two species show great calling similarity with P.

billigonigerus and D. sanborni respectively, thus we

decided to group these species as Physalaemus spp.

and Dendropsophus spp. for further comparisons.

The less intensified landscape showed significantly

greater mean total richness and less variability than

within the more intensified landscape (t = 4.0526,

df = 116.48, p\ 0.0001). Mean total richness at

sampling pointswas 7.06 ±1.56 (mean ± SE) ranging

from 5 to 12 species around Cerrito and 5.83 ± 1.66

ranging from 3 to12 species around Crespo.

The proportion of points occupied per species

differed between landscapes as well (Fig. 3a). We

distinguished three groups of species’ frequency of

occurrence: 1) high frequency of occurrence species in

both landscapeswithmore than75 %of samplingpoints

occupied (n = 4: Leptodactylus gracilis, L. mystacinus,

L. latinasus, Hypsiboas pulchellus), 2) moderate to low

frequency of occurrence species that occupied between

15 and 75 % of sampling points showing a higher

occurrence in the less intensified area (n = 7: Rhinella

schneideri, R. fernandezae, Scinax nasicus, S. squalir-

ostris, Dendropsophus sp., Pseudopaludicola falcipes

and Physalaemus spp.) and 3) rare frequency of

occurrence species with less than 15 % of sampling

points occupied in each landscape (n = 4), one species

with a slightly higher occurrence in highly modified

landscapes (Odontophrynus americanus) and three

Table 1 General structure

of a priori models evaluated

for anuran richness and

species presence

Models General model structure

Null None

Single-factor Aquatic habitat (STREAM; WB and/or DISTWB)

Forested habitat (CA2)

Row crop production (CA1)

Heterogeneity (SHDI)

Connectivity (COHES2, ENN2 and/or NP2)

Rural housing (RE and DISTRE)

Multiple-factor Aquatic habitat ? forested habitat

Aquatic habitat ? row crop production

Aquatic habitat ? heterogeneity

Aquatic habitat ? connectivity

Aquatic habitat ? rural housing

Forested habitat ? heterogeneity

Forested habitat ? connectivity

Forested habitat ? connectivity ? heterogeneity

Forested habitat ? heterogeneity ? rural housing

Forested habitat ? connectivity ? heterogeneity ? rural housing

Forested habitat ? rural housing

Aquatic habitat ? forested habitat ? heterogeneity

Aquatic habitat ? forested habitat ? connectivity

Aquatic habitat ? forested habitat ? rural housing

Full-Factor Aquatic habitat ? forested

habitat ? heterogeneity ? connectivity ? rural housing
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specieswith a slightly higher frequency of occurrence in

less modified landscapes (R. arenarum, Elachistocleis

bicolor andP. riograndensis). Five species (33 %)were

significantly found in more sampling points in the less

intensified area: R. schneideri (v2 = 19.86, p\ 0.001),

R. fernandezae (v2 = 6.4, p\ 0.05), S. nasicus

(v2 = 8, p\ 0.005), Physalaemus spp. (v2 = 20.84,

p\ 0.001) andP. riograndensis (v2 = 6.31, p\ 0.05).

Finally, S. squalirostris and Dendropsophus sp showed

a marginally higher occurrence in the less intensified

area (v2 = 3.06; p = 0.08 for both species).

Among the detected species, nine species (60 %)

showed differences in the maximum activity level

reached per sampling point between agricultural

landscapes: L. mystacinus (t = 3.65, p\ 0.001) and

O. americanus (t = 2.53, p\ 0.05) were more active

in Crespo area (more intensified landscape) while S.

nasicus (t = 6.83, p\ 0.0001), Physalaemus spp.

(t = 7.10, p\ 0.0001), R. schneideri (t = 5.79,

p\ 0.0001), Dendropsophus spp. (t = 2.26, p\
0.05) y P. falcipes (t = 2.67, p\ 0.01), E. bicolor

(t = 2.19, p\ 0.05) and P. riograndensis (Fig. 3B)

were more active in Cerrito area (less intensified

landscape). The calling activity level of species

showed a very similar pattern than the one observed

for the distribution of occurrence frequencies.

Landscape structure influence on anurans

at community and species level

Richness

Site-level species richness was positively related to

total cover of forests (CA2) at both buffer distances,

and length of stream sections (STREAM) within

250-m (Fig. 4, Supplementrary material Appendix 3).

STREAM_250 was present in 60 % of the best models

while CA2_250 and CA2_500 were in 53 and 27 %

respectively. Number of Forest patches at the 250-m

scale (NP2_250), cohesion of forest patches at the

500-m scale (COHES2_500) and distance to rural

establishments (DISTRE) also showed a positive

influence on richness and were present in 13 % of

the models (Fig. 4).

Species responses

Canonical correspondence analysis (CCA) axes

explained 25 and 26 % of the variation at 250 and

500 m respectively indicating high variability in the

data (Table 4). CCA axis 1 accounted for approxi-

mately 78 % of the constrained variability at both

scales indicating a strong gradient, while CCA axis 2

accounted for 8 % of the constrained variability.

CCA1 was most strongly influenced by total forest

cover (CA2) and distance to rural establishments

(DISTRE) at both scales.

Species formed two response groups in relation to

the landscape variables. L. latinasus, L. mystacinus, L.

gracilis and H. pulchellus (group 1) showed no

association with any of the considered landscape

variables. Due to this response pattern and the fact that

they showed high frequency of occurrence and activity

Table 3 Anuran species detected by calling and visual sur-

veys at sampling points in less and more intensified landscapes

near Cerrito and Crespo areas

Species Cerrito Crespo

Bufonidae

R. schneideri X X

R. fernandezae X X

R. arenarum X X

Cycloramphidae

O. americanus X X

Hylidae

S. nasicus X X

S. squalirostris X X

S. acuminatus X

Dendropsophus spp.**

D. sanborni X X

D. nanus X

H. pulchellus X X

Leiuperidae

Physalaemus spp.*

P. albonotatus X

P. biligonigerus X X

P. riograndensis X

P. falcipes X X

Leptodactylidae

L. latinasus X X

L. mystacinus X X

L. gracilis X X

Microhylidae

E. bicolor X X

Species classified by family according to Vaira et al. 2012. *

Grouped species: P.albonotatus and P. biligonigerus. **

Grouped species: D. sanborni and D. nanus
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in both landscapes, these species were not analyzed

further. The other group, Dendropsophus spp.,

Physalaemus spp., R. schneideri and R. fernandezae

(group 2) showed an association to CA2 and DISTRE.

Species in this group were more frequent in sampling

points of less intensified landscape. S. nasicus, S.

squalirostris and P. falcipes did not associate strongly

with either group. However, S. nasicus showed

similarities to both groups while S. squalirostris and

P. falcipes were more similar to group 2 (Fig. 5).

According to individual species analyses, we

observed that the presence of six out of seven

amphibian species responded positively to aquatic

habitat availability, where total length of stream

(STREAM) was the more important type of aquatic

habitat. Also, four of these species (S. nasicus,

Dendropsophus spp., Physalaemus spp. and P.

falcipes) responded positively to forested habitat

cover (CA2). Forest connectivity given by cohesion

of forest patches (COHES2) was relevant for five

species (Rhinella schneideri, R. fernandezae, Den-

dropsophus spp. and Physalaemus spp. and P.

falcipes). P. falcipes was the only species that showed

a negative response to this variable. Three species

(Rhinella schneideri, Physalaemus spp. and S. nasi-

cus) responded to landscape heterogeneity, i.e. diver-

sity of cover classes (SHDI). S. nasicus was the only

species that responded positively to this variable. In

relation to human impact, rural housing (RE and

DISTRE) and row crop production area (CA1) had
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Fig. 3 Proportion of

occupied sampling points

(a) and maximum activity

level values (b) per site per
species detected by calling

surveys between less

(Cerrito area, white bars)

and more intensified

landscapes (Crespo area,

black bars). Species codes:

Leptodactylus latinasus (Ll),

L. mystacinus (Lm), L.

gracilis (Lg), Hypsiboas

pulchellus (Hp), Scinax

nasicus (Sn), Physalaemus

spp. (Psp: Physalaemus

albonotatus and P.

billigonigerus), Rhinella

schneideri (Rs), R.

fernandezae (Rf), S.

squalirostris (Ss),

Dendropsophus spp. (Dsp:

Dendropsophus sanborni

and D. nanus),

Pseudopaludicola falcipes

(Pf), R. arenarum (Ra),

Odontophrynus americanus

(Oa), Elachistocleis bicolor

(Eb) y Physalaemus

riograndensis (Pr).

*P\ 0.05, **P\ 0.005,

***P\ 0.0001
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negative effects for two species (Rhinella schneideri

and Dendropsophus spp.) (Fig. 6, Supplementrary

material Appendix 3).

Regarding spatial scales we found that two species

(S. squalirostris and Physalaemus spp.) were clearly

related to landscape variables at the 250 m scale, four

(R. schneideri, R. fernandezae, S. nasica and P.

falcipes) at the 500 m scale and one (Dendropsophus

spp.) to variables at both scales (Fig. 6, Supplemen-

trary material Appendix 3).

R. schneideri was positively associated with the

distance to rural establishments (DISTRE) and aquatic

habitat availability (STREAM and WB) while

negatively associated with number of rural houses

(RE), diversity of cover classes (SHDI) and row crop

production (CA1). Other landscape variables that did

not have significant coefficients but appeared within

the best set of models for this species were forest

cohesion (COHES2) and terrestrial habitat availability

(CA2). The main scale of response for this species was

500 m.

R. fernandezae presence increased with forest

cohesion (COHES2) within 500 m. According to the

frequency of these variables in the best set of

models it also showed an association at the same

scale, i.e. 500 m, with aquatic (STREAM) and

Fig. 4 Relationship

between landscape variables

and anuran species presence

at two spatial scales (250

and 500 m). Averaged

coefficients of more relevant

variables that were included

in the best set of models are

shown (a) together with the

proportion of models in the

best set where those

landscape variables were

present (b). Position of

averaged coefficients above

or below zero indicates

effect direction as positive

or negative respectively
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forested habitat availability (CA2), diversity of

cover classes (SHDI) and distance to rural estab-

lishments (DISTRE).

Scinax nasicus showed a positive response to

terrestrial habitat availability (CA2) and diversity of

cover classes (SHDI) at 500 m scale. A response to

aquatic (STREAM) and the distance to rural estab-

lishments (DISTRE) was also observed in the best set

of models.

On the other hand, the presence of S. squalirostris

was only positively related to stream length within

250 m (STREAM). However, forest cover (CA2),

distance to water bodies (DISTWB) and diversity of

cover classes (SHDI) appeared also in the best set of

models.

Dendropsophus spp. responded to a great number

of landscape variables at both spatial scales. It

responded positively to total length of stream sections

(STREAM), forest cover (CA2), forest patch cohesion

(COHES2), and negatively to cover of row crops

(CA1). Other variables in the best set of models were:

number of water bodies (WB), diversity of cover

classes (SHDI), forest patches (NP2), proximity of

forest patches (ENN2) and distance to rural establish-

ments (DISTRE).

Physalaemus spp. showed a similar response pat-

tern than Dendropsophus ssp although it was limited

to the 250 m scale. Landscape variables associated

positively with this species were: number and prox-

imity of water bodies (WB and DISTWB), total length

of stream sections (STREAM), forest area (CA2),

number and cohesion of forest patches (NP2 and

COHES2) and diversity of cover classes (SHDI).

Finally, P. falcipes was associated positively with

total number of water bodies (WB), forest cover

(CA2) and patch cohesion (COHES2). Other rele-

vant variables were: cover of row crops (CA1),

number (RE) and proximity (DISTRE) of rural

establishments. This species showed a clear associ-

ation to the 500 m spatial scale (Fig. 6, Supplemen-

trary material Appendix 3).

Discussion

In west-central Entre Rios, landscape composition

and configuration influenced the frequency of

occurrence, and relative abundance of some anuran

species, which influenced landscape-scale species

richness patterns between two landscapes along the

agricultural expansion and intensification gradient.

The landscape with greater agricultural expansion

and intensification had lower stream and forested

habitats within 250 and 500 m of sampling points.

While some species seems to be unaffected or

adapting well to the new conditions, there is a

subset of sensitive species that responded negatively

to these reduced landscape features at different

scales. Thus, changing anuran diversity patterns in

east-central Argentina appear to be driven by the

reduction in several key species, and at the sampling

point scale, there is large diversity variation and

potential for local extinctions that may result in

more simplified anuran communities.

Table 4 Summary information for Canonical Correspondence

Analysis (CCA) obtained at both spatial scales (250 and 500

m). Output shows inertia (mean squared contingency coeffi-

cients) and proportion values that describe the explanatory

power of the analysis given by considered landscape variables

(constrained) and the unexplained ‘‘variance’’ (unconstrained),

eigenvalues and importance of first and second CCA axes, and

scores for landscape variables on CCA1 and CCA2

250 m 500 m

Inertia Proportion Inertia Proportion

Total 0.27 1.00 0.27 1.00

Constrained 0.07 0.25 0.07 0.26

Unconstrained 0.20 0.75 0.20 0.74

Eigenvalues CCA1 CCA2 CCA1 CCA2

0.05 0.005 0.05 0.005

0.79 0.08 0.77 0.08

Landscape variables

SHDI 0.11 -0.04 0.01 0.26

CA1 0.15 0.21 0.18 0.27

CA2 -0.50 -0.57 -0.59 -0.65

NP2 -0.31 -0.48 -0.23 -0.07

ENN2 0.10 0.19 0.12 0.02

COHES2 -0.28 -0.29 -0.27 -0.24

RE 0.13 0.43 0.06 0.33

DistRE -0.29 -0.67 -0.29 -0.51

DistWB -0.05 0.11 0.10 -0.08

STREAM -0.19 -0.35 -0.14 -0.13
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Fig. 5 Canonical

correspondence analysis

plots showing association of

species presence data and

landscape variables at two

scales: 250 m (a) and 500 m

(b)
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Anuran life history traits and landscape structure

relationships

We identified four anuran species that tolerate high

levels of agricultural expansion and intensification (L.

latinasus, L. mystacinus, L. gracilis andH. pulchellus),

seven ‘sensitive’ species (R. shneideri,R. fernandezae,

S. nasicus, S. squalirostris, Dendropsophus spp.,

Physalaemus spp. and Pseudopaludicola falcipes) that

respond negatively to high levels of agriculturaliza-

tion, and four species that were ‘rare’ in both

landscapes (i.e. R. arenarum, O. americanus, E.

bicolor and P. riograndensis). In general, we observed

that species within each group share common life

history traits that may determine anurans response to

landscape changes.
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Fig. 6 Relationship

between landscape variables

and anuran species presence

at two spatial scales (250

and 500 m). Averaged

coefficients of more relevant

variables that were included

in the best set of models are

shown per species

(a) together with the

proportion of models in the

best set where those

landscape variables were

present (b). Position of

averaged coefficients above

or below zero indicates

effect direction as positive

or negative respectively
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‘Tolerant’ species have life-history traits that might

allow them to survive in intensified agricultural areas.

Most are terrestrial-aquatic frogs (L. latinasus, L.

mystacinus and L. gracilis), breeding in open land

temporary ponds (Cei 1980; Basso 1990) or laying

eggs in foam nests inside caves that develop rapidly

after heavy rains (Gallardo 1972, 1974; Achaval and

Olmos 2003). H. pulchellus is a treefrog with longer

larval stages but is a continuous breeder that uses a

variety of water bodies (Peltzer and Lajmanovich

2007). These ‘tolerant’ species are also generalist

predators, medium-to-large in size, and potentially

good dispersers (Gallardo 1987; Basso 1990). Thus,

they might detect optimal habitat from a great distance

and persist despite habitat transformation (Zollner

2000; Mech and Zollner 2002). The activity patterns

of ‘tolerant’ species showed interesting differences

between studied landscapes. For example, L. mystac-

inus was more active in highly modified agricultural

areas, which might indicate that certain levels of

agriculture could represent more resources for this

species as observed for H. pulchellus and L. gracilis.

On the contrary, L. latinasus was less active suggest-

ing it may be less adapted to such landscapes (Suárez

and Zaccagnini 2004).

‘Rare’ species included two terrestrial-aquatic anu-

ranswith explosive breeding events of short duration or

with breeding periods taken place every 2 or more

years. For example,P. riograndensis shows 1 or 2 days

of high breeding activity only after very heavy rains

events and O. americanus also shows this breeding

activity pattern but also it occurs every two years

because tadpoles overwinter and metamorphose the

following season (Isacch and Barg 2002; Martori et al.

2005). This feature confers very low detectability to

these species andmay explain their very low frequency

of occurrence and activity level in both landscapes. R.

arenarum and E. bicolor are more terrestrial and their

rarity in this study was difficult to explain. The biology

ofE. bicolor is notwell known (Martori et al. 2005) and

R. arenarum shows a more regular pattern of breeding

activity (Isacch and Barg 2002) and resembles the

other two toad species considered as sensitive.

Among ‘sensitive’ species we found terrestrial-

aquatic frogs (Physalaemus spp., P. falcipes), toads

(R. schneideri and R. fernandezae) and arboreal-aquatic

species (S. nasicus, S. squalirostris, Dendropsophus

spp.) (Lajmanovich and Peltzer 2004; Dodd 2010).

Their diet specificity and longer development stages

may explain their lower frequency of occurrence in
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agricultural intensified landscapes as breeding habitat is

lower and diversity of prey decreases (Lehtinen and

Ramanamanjato 2006). Four ‘sensitive’ species (R.

schneideri, Physalaemus spp., P. falcipes and Den-

dropsophus spp.) may require stream habitats sur-

rounded by forest habitat to fulfill their life history

needs. This may be an evidence of ‘landscape comple-

mentation effect’, in that the persistence of anurans in

highly fragmented landscapes may be constrained by

the need for connectivity between aquatic breeding sites

(i.e. streams) and suitable terrestrial habitat (i.e. forests)

(Dunning et al. 1992; Rothermel 2004). Landscapes

extremely modified by agriculture have less landscape

complementation of required habitat types and these

anurans might be unable to fulfill their life require-

ments. Rural housing density and proximity might

negatively affect R. schneideri, Physalaemus spp. and

Dendropsophus ssp because they may depend on

breeding habitat that is rare in residential areas and

undergo domestic animals predation, road mortality or

even stream pollution by waste disposal (Carr and

Fahrig 2001; Suárez, pers.obs).

Landscapes including longer sections of streams,

especially headwaters and low order streams may

favor six out of seven sensitive species (R. schneideri,

S. nasica, S. squalirostris, Physalaemus spp., Den-

drosophus spp. and P. falcipes). Although these

species are considered pond-breeding anurans, most

have a long larval development, higher risk of

desiccation and prolonged exposure to agrochemicals

(particularly around Crespo town). Few natural ponds,

most with altered physical and chemical conditions,

are present in this area (Suarez R.P. pers. obs.).

Streams surrounded by forests might substitute ponds

as good quality aquatic habitat in these highly

modified landscapes (Suarez pers. obs; Forman

1995; Naiman et al. 2005; Williams 2008). Forest

connectivity along and between streams might favor

toad species such as R. fernandezae and R. schneideri

by providing favorable conditions to move between

breeding sites (Sinsch 1990; Rothermel 2004; Cush-

man et al. 2009). Toads have longer migration

distances than other anurans (Semlitsch and Bodie

2003) ranging from 250 to 1000 m (Forester et al.

2006) and avoid open habitats probably due to higher

predation risks (Rothermel and Semlitsch 2002).

Landscape structure influenced anuran species at

two spatial scales. Main effects were similar at 250 and

500 m scales. However, species showed specific

associations to spatial scale (Johnson et al. 2002; Price

et al. 2004). This specificity might have some relation

to body size. Three of the largest sensitive species (R.

schneideri, R. fernandezae and S. nasicus) showed

stronger association to landscape variables at 500 m

while two of the smallest species (S. squalirostris and

Physalaemus spp.) did it at 250 m. Larger anurans tend

to travel farther (Semlitsch and Bodie 2003; Forester

et al. 2006; Daversa et al. 2012) and are able to detect

preferred habitats at greater distances (Zollner 2000).

Landscape structure and anuran assemblages

The response of amphibian richness to landscape

structure changes produced by the expansion of

agriculture was determined by the observed individual

relationships. In general terms, anuran richness would

be reduced by the loss of forests and streams mainly at

the 250 m scale as shown in other studies regarding

forests cover (Kolozsvary and Swihart 1999; Houla-

han et al. 2000; Trenham and Shaffer 2005). The

moderate-low variation of richness explained in our

models might be explained by the number of species

that were not related to landscape pattern.

We suggest that if our observed patterns between

landscape and anuran diversity are maintained through

time and landscape changes such as lower forest cover

continues, the anuran community may become less

diverse. Several species, i.e. Rhinella shneideri, R.

fernandezae, Scinax nasicus, S. squalirostris, Den-

dropsophus spp., Physalaemus spp. and Pseudopalu-

dicola falcipes, would be further affected and could

experience local extinctions in highly modified agri-

cultural landscapes in east-central Argentina. For

example, the presence of S. acuminatus, P. limellum,

L. elenae and T. typhonius was recorded in Enrique

Berduc Rural Educational Park, one of the last

remnants of the historic landscape without agricultural

use between Crespo and Cerrito areas. These anurans

should be found across the study area based on

historical ranges (IUCN 2015), but our inability to

detect after multiple visits may indicate some of these

species have already undergone local extinctions.

Conservation and management implications

Our results present baseline patterns that can be used

to help mitigate landscape changes in a substantial

area of Entre Rios and the Espinal eco-region under
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heavy threat of rapid agricultural expansion and

intensification, The future agricultural expansion in

Entre Rı́os will likely continue to exert negative

impacts on anurans and the ecosystem services they

provide (e.g. biological pest control, Attademo et al.

2005; Hocking and Babbitt 2014).

Based on our findings, landscapes that could

provide more forest habitat within 500 m of streams

would help mitigate local loss of species as this

measure would assist the most sensitive species (R.

schneideri, R.fernandezae, Physalaemus spp., Den-

dropsophus spp.). None of these species are catego-

rized as vulnerable or threatened (Vaira et al. 2012;

IUCN 2015). Thus, these species could be used as

focus species in future monitoring studies to determine

landscape change effects to provide valuable infor-

mation for an accurate categorization.

Finally, recent development of the National Law

26331 on Minimum Standards for environment pro-

tection of native forests (Presupuestos Mı́nimos de

Protección Ambiental de Bosques Nativos) provides a

good opportunity to preserve and manage habitat for

anuran conservation. Managers involved in land-use

planning could include the relationships found in this

study into landscape management recommendations

to preserve the biodiversity of one of the most globally

endangered biological groups.
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gráfica al estudio de la fragmentación del bosque nativo

entrerriano y sus efectos sobre las poblaciones de aves.

Trabajo final de aplicación. Universidad de Luján
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