2,975 research outputs found

    Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation

    Get PDF
    Background. Over a hundred years ago, Wolff originally observed that bone growth and remodeling are exquisitely sensitive to mechanical forces acting on the skeleton. Clinical studies have noted that the size and the strength of bone increase with weight bearing and muscular activity and decrease with bed rest and disuse. Although the processes of mechanotransduction and functional response of bone to mechanical strain have been extensively studied, the molecular signaling mechanisms that mediate the response of bone cells to mechanical stimulation remain unclear. Results. Here, we identify a novel germline mutation at the mouse Bone morphogenetic protein 5 (Bmp5) locus. Genetic analysis shows that the mutation occurs at a site encoding the proteolytic processing sequence of the BMP5 protein and blocks proper processing of BMP5. Anatomic studies reveal that this mutation affects the formation of multiple skeletal features including several muscle-induced skeletal sites in vivo. Biomechanical studies of osteoblasts from these anatomic sites show that the mutation inhibits the proper response of bone cells to mechanical stimulation. Conclusion. The results from these genetic, biochemical, and biomechanical studies suggest that BMPs are required not only for skeletal patterning during embryonic development, but also for bone response and remodeling to mechanical stimulation at specific anatomic sites in the skeleton. © 2008 Ho et al; licensee BioMed Central Ltd

    Study of transforming growth factor alpha for the maintenance of human embryonic stem cells

    Get PDF
    Human embryonic stem cells (hESCs) have great potential for regenerative medicine as they have selfregenerative and pluripotent properties. Feeder cells or their conditioned medium are required for the maintenance of hESC in the undifferentiated state. Feeder cells have been postulated to produce growth factors and extracellular molecules for maintaining hESC in culture. The present study has aimed at identifying these molecules. The gene expression of supportive feeder cells, namely human foreskin fibroblast (hFF-1) and non-supportive human lung fibroblast (WI-38) was analyzed by microarray and 445 genes were found to be differentially expressed. Gene ontology analysis showed that 20.9% and 15.5% of the products of these genes belonged to the extracellular region and regulation of transcription activity, respectively. After validation of selected differentially expressed genes in both human and mouse feeder cells, transforming growth factor a (TGFa) was chosen for functional study. The results demonstrated that knockdown or protein neutralization of TGFa in hFF-1 led to increased expression of early differentiation markers and lower attachment rates of hESC. More importantly, TGFa maintained pluripotent gene expression levels, attachment rates and pluripotency by the in vitro differentiation of H9 under non-supportive conditions. TGFa treatment activated the p44/42MAPK pathway but not the PI3K/Akt pathway. In addition, TGFa treatment increased the expression of pluripotent markers, NANOG and SSEA-3 but had no effects on the proliferation of hESCs. This study of the functional role of TGFa provides insights for the development of clinical grade hESCs for therapeutic applications. © The Author(s) 2012. © Springer-Verlag 2012.published_or_final_versio

    Kinetics of cancer: a method to test hypotheses of genetic causation

    Get PDF
    BACKGROUND: Mouse studies have recently compared the age-onset patterns of cancer between different genotypes. Genes associated with earlier onset are tentatively assigned a causal role in carcinogenesis. These standard analyses ignore the great amount of information about kinetics contained in age-onset curves. We present a method for analyzing kinetics that measures quantitatively the causal role of candidate genes in cancer progression. We use our method to demonstrate a clear association between somatic mutation rates of different DNA mismatch repair (MMR) genotypes and the kinetics of cancer progression. METHODS: Most experimental studies report age-onset curves as the fraction diagnosed with tumors at each age for each group. We use such data to estimate smoothed survival curves, then measure incidence rates at each age by the slope of the fitted curve divided by the fraction of mice that remain undiagnosed for tumors at that age. With the estimated incidence curves, we compare between different genotypes the median age of cancer onset and the acceleration of cancer, which is the rate of increase in incidence with age. RESULTS: The direction of change in somatic mutation rate between MMR genotypes predicts the direction of change in the acceleration of cancer onset in all 7 cases (p ˜ 0.008), with the same result for the association between mutation rate and the median age of onset. CONCLUSION: Many animal experiments compare qualitatively the onset curves for different genotypes. If such experiments were designed to analyze kinetics, the research could move to the next stage in which the mechanistic consequences of particular genetic pathways are related to the dynamics of carcinogenesis. The data we analyzed here were not collected to test mechanistic and quantitative hypotheses about kinetics. Even so, a simple reanalysis revealed significant insights about how DNA repair genotypes affect separately the age of onset and the acceleration of cancer. Our method of comparing genotypes provides good statistical tests even with small samples for each genotype

    Challenges and directions: an analysis of Genetic Analysis Workshop 17 data by collapsing rare variants within family data

    Get PDF
    Recent studies suggest that the traditional case-control study design does not have sufficient power to discover rare risk variants. Two different methods—collapsing and family data—are suggested as alternatives for discovering these rare variants. Compared with common variants, rare variants have unique characteristics. In this paper, we assess the distribution of rare variants in family data. We notice that a large number of rare variants exist only in one or two families and that the association result is largely shaped by those families. Therefore we explore the possibility of integrating both the collapsing method and the family data method. This combinational approach offers a potential power boost for certain causal genes, including VEGFA, VEGFC, SIRT1, SREBF1, PIK3R3, VLDLR, PLAT, and FLT4, and thus deserves further investigation

    Prediction of Deleterious Non-Synonymous SNPs Based on Protein Interaction Network and Hybrid Properties

    Get PDF
    Non-synonymous SNPs (nsSNPs), also known as Single Amino acid Polymorphisms (SAPs) account for the majority of human inherited diseases. It is important to distinguish the deleterious SAPs from neutral ones. Most traditional computational methods to classify SAPs are based on sequential or structural features. However, these features cannot fully explain the association between a SAP and the observed pathophysiological phenotype. We believe the better rationale for deleterious SAP prediction should be: If a SAP lies in the protein with important functions and it can change the protein sequence and structure severely, it is more likely related to disease. So we established a method to predict deleterious SAPs based on both protein interaction network and traditional hybrid properties. Each SAP is represented by 472 features that include sequential features, structural features and network features. Maximum Relevance Minimum Redundancy (mRMR) method and Incremental Feature Selection (IFS) were applied to obtain the optimal feature set and the prediction model was Nearest Neighbor Algorithm (NNA). In jackknife cross-validation, 83.27% of SAPs were correctly predicted when the optimized 263 features were used. The optimized predictor with 263 features was also tested in an independent dataset and the accuracy was still 80.00%. In contrast, SIFT, a widely used predictor of deleterious SAPs based on sequential features, has a prediction accuracy of 71.05% on the same dataset. In our study, network features were found to be most important for accurate prediction and can significantly improve the prediction performance. Our results suggest that the protein interaction context could provide important clues to help better illustrate SAP's functional association. This research will facilitate the post genome-wide association studies

    Rhinosinusitis derived Staphylococcal enterotoxin B plays a possible role in pathogenesis of food allergy

    Get PDF
    BACKGROUND: Staphylococcal enterotoxin B (SEB) is a potent immunomodulator and implicated with pathogenesis of inflammatory diseases mediated by Th1 or Th2 dominant immune responses. The objective of this study is to determine a possible association between rhinosinusitis derived SEB and pathogenesis of food allergy (FA). METHODS: The study included chronic rhinosinusitis (CRS) patients with FA (N = 46) or without FA (N = 33). Controls included FA patients without CRS (N = 26) and healthy volunteers (N = 25). In CRS patients, we assessed the parameters associated with FA including prick skin test (PST) reactivity to food allergens, serum levels of allergen-specific IgE and cytokines (IL-4, IL-13, IFN-Î(3)), and the number/reactivity of food-allergen specific Th1/Th2 cells in the peripheral blood before and 2 months after sinus surgery. Changes of these parameters were evaluated in comparison with changes in SEB concentration in the sinus lavage and stool samples and also in vitro reactivity to SEB. In CRS patients with FA, we also assessed changes in reactivity to oral challenge of offending food before and after sinus surgery. RESULTS: Two months following sinus surgery, we observed statistically significant reduction in PST and oral challenge reactivity in CRS patients with FA in parallel to decrease in serum levels of Th2 cytokines (IL-4 and IL-13) and allergen specific IgE. Improvement of reactivity to food allergens was positively associated with decline in SEB concentrations in the sinus lavage and stool samples. In vitro study results also indicated a role of SEB in aggravation of Th2 skewed responses to food allergens. Such changes were not observed in CRS-non FA patients or control FA patients. CONCLUSION: The rhinosinusitis derived SEB plays a certain role in the pathogenesis of FA by augmenting and/or maintaining polarized Th2 responses. Removal of SEB-producing pathogens from the rhinosinuses may be beneficial for attenuating the FA symptoms in patients with CRS-FA

    Forward-time simulation of realistic samples for genome-wide association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forward-time simulations have unique advantages in power and flexibility for the simulation of genetic samples of complex human diseases because they can closely mimic the evolution of human populations carrying these diseases. However, a number of methodological and computational constraints have prevented the power of this simulation method from being fully explored in existing forward-time simulation methods.</p> <p>Results</p> <p>Using a general-purpose forward-time population genetics simulation environment, we developed a forward-time simulation method that can be used to simulate realistic samples for genome-wide association studies. We examined the properties of this simulation method by comparing simulated samples with real data and demonstrated its wide applicability using four examples, including a simulation of case-control samples with a disease caused by multiple interacting genetic and environmental factors, a simulation of trio families affected by a disease-predisposing allele that had been subjected to either slow or rapid selective sweep, and a simulation of a structured population resulting from recent population admixture.</p> <p>Conclusions</p> <p>Our algorithm simulates populations that closely resemble the complex structure of the human genome, while allows the introduction of signals of natural selection. Because of its flexibility to generate different types of samples with arbitrary disease or quantitative trait models, this simulation method can simulate realistic samples to evaluate the performance of a wide variety of statistical gene mapping methods for genome-wide association studies.</p

    Enhanced Neointima Formation Following Arterial Injury in Immune Deficient Rag-1−/− Mice Is Attenuated by Adoptive Transfer of CD8+ T cells

    Get PDF
    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8−/− or CD4−/− mice, respectively, to immune-deficient Rag-1−/− mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1−/− mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1−/− mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4−/− mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation

    Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    Get PDF
    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components
    corecore