142 research outputs found

    Comparative physiology of Australian quolls (Dasyurus; Marsupialia)

    Get PDF
    Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T ^sub b^ of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C^sup -1^) and tiger quolls (0.051°C ºC^sup -1^) to substantial in northern quolls (0.100°C ºC^sup -1^) and chuditch (0.146°C ºC^sup -1^), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O^sub 2^ g^sup -1^ h^sup -1^), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H^sub 2^O g^sup -1^ h^sup -1^) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (-1.3°C), eastern (-12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls

    Metabolic, hygric and ventilatory physiology of a hypermetabolic marsupial, the honey possum (Tarsipes rostratus)

    Get PDF
    The honey possum is the only non-volant mammal to feed exclusively on a diet of nectar and pollen. Like other mammalian and avian nectarivores, previous studies indicated that the honey possum's basal metabolic rate was higher than predicted for a marsupial of equivalent body mass. However, these early measurements have been questioned. We re-examined the basal metabolic rate (2.52 +/- A 0.222 ml O(2) g(-1) h(-1)) of the honey possum and confirm that it is indeed higher (162%) than predicted for other marsupials both before and after accounting for phylogenetic history. This, together with its small body mass (5.4 +/- A 0.14 g; 1.3% of that predicted by phylogeny) may be attributed to its nectarivorous diet and mesic distribution. Its high-basal metabolic rate is associated with a high-standard body temperature (36.6 +/- A 0.48A degrees C) and oxygen extraction (19.4%), but interestingly the honey possum has a high point of relative water economy (17.0A degrees C) and its standard evaporative water loss (4.33 +/- A 0.394 mg H(2)O g(-1) h(-1)) is not elevated above that of other marsupials, despite its mesic habitat and high dietary water intake.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Physiological regulation of evaporative water loss in endotherms: Is the little red kaluta (Dasykaluta rosamondae) an exception or the rule?

    Get PDF
    It is a central paradigm of comparative physiology that the effect of humidity on evaporative water loss (EWL) is determined for most mammals and birds, in and below thermoneutrality, essentially by physics and is not under physiological regulation. Fick's law predicts that EWL should be inversely proportional to ambient relative humidity (RH) and linearly proportional to the water vapour pressure deficit (Δwvp) between animal and air. However, we show here for a small dasyurid marsupial, the little kaluta (Dasykaluta rosamondae), that EWL is essentially independent of RH (and Δwvp) at low RH (as are metabolic rate and thermal conductance). These results suggest regulation of a constant EWL independent of RH, a hitherto unappreciated capacity of endothermic vertebrates. Independence of EWL from RH conserves water and heat at low RH, and avoids physiological adjustments to changes in evaporative heat loss such as thermoregulation. Re-evaluation of previously published data for mammals and birds suggests that a lesser dependence of EWL on RH is observed more commonly than previously thought, suggesting that physiological independence of EWL of RH is not just an unusual capacity of a few species, such as the little kaluta, but a more general capability of many mammals and birds

    Effects of experiment start time and duration on measurement of standard physicological variables

    Get PDF
    Duration and start time of respirometry experiments have significant effects on the measurement of basal values for several commonly measured physiological variables (metabolic rate, evaporative water loss and body temperature). A longer measurement duration reduced values for all variables for all start times, and this was an effect of reduced animal activity rather than random sampling. However, there was also an effect of circadian rhythm on the timing of minimal physiological values. Experiment start time had a significant effect on time taken to reach minimal values for all variables, ranging from 4:00 h ± 38 min (body temperature, start time 23:00 h) to 8:54 h ± 52 min (evaporative water loss, start time 17:00 h). It also influenced the time of day that minimal values were obtained, ranging from 22:24 h ± 40 min (carbon dioxide production, start time 15:00 h) to 06:00 h ± 57 min (oxygen consumption, start time 23:00 h), and the minimum values measured. Consequently both measurement duration and experiment start time should be considered in experimental design to account for both a handling and a circadian effect on the animal’s physiology. We suggest that experiments to measure standard physiological variables for small diurnal birds should commence between 17:00 h and 21:00 h, and measurement duration should be at least 9 h

    The “minimal boundary curve for endothermy” as a predictor of heterothermy in mammals and birds: a review

    Get PDF
    According to the concept of the “minimal boundary curve for endothermy”, mammals and birds with a basal metabolic rate (BMR) that falls below the curve are obligate heterotherms and must enter torpor. We examined the reliability of the boundary curve (on a double log plot transformed to a line) for predicting torpor as a function of body mass and BMR for birds and several groups of mammals. The boundary line correctly predicted heterothermy in 87.5% of marsupials (n = 64), 94% of bats (n = 85) and 82.3% of rodents (n = 157). Our analysis shows that the boundary line is not a reliable predictor for use of torpor. A discriminate analysis using body mass and BMR had a similar predictive power as the boundary line. However, there are sufficient exceptions to both methods of analysis to suggest that the relationship between body mass, BMR and heterothermy is not a causal one. Some homeothermic birds (e.g. silvereyes) and rodents (e.g. hopping mice) fall below the boundary line, and there are many examples of heterothermic species that fall above the boundary line. For marsupials and bats, but not for rodents, there was a highly significant phylogenetic pattern for heterothermy, suggesting that taxonomic affiliation is the biggest determinant of heterothermy for these mammalian groups. For rodents, heterothermic species had lower BMRs than homeothermic species. Low BMR and use of torpor both contribute to reducing energy expenditure and both physiological traits appear to be a response to the same selective pressure of fluctuating food supply, increasing fitness in endothermic species that are constrained by limited energy availability. Both the minimal boundary line and discriminate analysis were of little value for predicting the use of daily torpor or hibernation in heterotherms, presumably as both daily torpor and hibernation are precisely controlled processes, not an inability to thermoregulate

    Local Chatter or International Buzz? Language Differences on Posts about Zika Research on Twitter and Facebook

    Get PDF
    Background When the Zika virus outbreak became a global health emergency in early 2016, the scientific community responded with an increased output of Zika-related research. This upsurge in research naturally made its way into academic journals along with editorials, news, and reports. However, it is not yet known how or whether these scholarly communications were distributed to the populations most affected by Zika. Methodology/Principal findings To understand how scientific outputs about Zika reached global and local audiences, we collected Tweets and Facebook posts that linked to Zika-related research in the first six months of 2016. Using a language detection algorithm, we found that up to 90% of Twitter and 76% of Facebook posts are in English. However, when none of the authors of the scholarly article are from English-speaking countries, posts on both social media are less likely to be in English. The effect is most pronounced on Facebook, where the likelihood of posting in English is between 11 and 16% lower when none of the authors are from English-speaking countries, as compared to when some or all are. Similarly, posts about papers written with a Brazilian author are 13% more likely to be in Portuguese on Facebook than when made on Twitter. Conclusions/Significance Our main conclusion is that scholarly communication on Twitter and Facebook of Zikarelated research is dominated by English, despite Brazil being the epicenter of the Zika epidemic. This result suggests that scholarly findings about the Zika virus are unlikely to be distributed directly to relevant populations through these popular online mediums. Nevertheless, there are differences between platforms. Compared to Twitter, scholarly communication on Facebook is more likely to be in the language of an author’s country. The Zika outbreak provides a useful case-study for understanding how scientific outputs are communicated to relevant populations. Our results suggest that Facebook is a more effective channel than Twitter, if communication is desired to be in the native language of the affected country. Further research should explore how local media—such as governmental websites, newspapers and magazines, as well as television and radio—disseminate scholarly publication

    On the thermodynamic origin of metabolic scaling

    Get PDF
    This work has been funded by projects AYA2013-48623-C2-2, FIS2013-41057-P, CGL2013-46862-C2-1-P and SAF2015-65878-R from the Spanish Ministerio de Economa y Competitividad and PrometeoII/2014/086, PrometeoII/2014/060 and PrometeoII/2014/065 from the Generalitat Valenciana (Spain). BL acknowledges funding from a Salvador de Madariaga fellowship, and L.L. acknowledges funding from EPSRC Early Career fellowship EP/P01660X/1

    Environment, Migratory Tendency, Phylogeny and Basal Metabolic Rate in Birds

    Get PDF
    Basal metabolic rate (BMR) represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger) explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20°C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of addressing both broad-scale and individual-scale variation for understanding the determinants of BMR

    Could Direct Killing by Larger Dingoes Have Caused the Extinction of the Thylacine from Mainland Australia?

    Get PDF
    Invasive predators can impose strong selection pressure on species that evolved in their absence and drive species to extinction. Interactions between coexisting predators may be particularly strong, as larger predators frequently kill smaller predators and suppress their abundances. Until 3500 years ago the marsupial thylacine was Australia's largest predator. It became extinct from the mainland soon after the arrival of a morphologically convergent placental predator, the dingo, but persisted in the absence of dingoes on the island of Tasmania until the 20th century. As Tasmanian thylacines were larger than dingoes, it has been argued that dingoes were unlikely to have caused the extinction of mainland thylacines because larger predators are rarely killed by smaller predators. By comparing Holocene specimens from the same regions of mainland Australia, we show that dingoes were similarly sized to male thylacines but considerably larger than female thylacines. Female thylacines would have been vulnerable to killing by dingoes. Such killing could have depressed the reproductive output of thylacine populations. Our results support the hypothesis that direct killing by larger dingoes drove thylacines to extinction on mainland Australia. However, attributing the extinction of the thylacine to just one cause is problematic because the arrival of dingoes coincided with another the potential extinction driver, the intensification of the human economy

    Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)

    Full text link
    corecore