52 research outputs found

    Channel coding for progressive images in a 2-D time-frequency OFDM block with channel estimation errors.

    Get PDF
    Coding and diversity are very effective techniques for improving transmission reliability in a mobile wireless environment. The use of diversity is particularly important for multimedia communications over fading channels. In this work, we study the transmission of progressive image bitstreams using channel coding in a 2-D time-frequency resource block in an OFDM network, employing time and frequency diversities simultaneously. In particular, in the frequency domain, based on the order of diversity and the correlation of individual subcarriers, we construct symmetric n -channel FEC-based multiple descriptions using channel erasure codes combined with embedded image coding. In the time domain, a concatenation of RCPC codes and CRC codes is employed to protect individual descriptions. We consider the physical channel conditions arising from various coherence bandwidths and coherence times, leading to a range of orders of diversities available in the time and frequency domains. We investigate the effects of different error patterns on the delivered image quality due to various fade rates. We also study the tradeoffs and compare the relative effectiveness associated with the use of erasure codes in the frequency domain and convolutional codes in the time domain under different physical environments. Both the effects of intercarrier interference and channel estimation errors are included in our study. Specifically, the effects of channel estimation errors, frequency selectivity and the rate of the channel variations are taken into consideration for the construction of the 2-D time-frequency block. We provide results showing the gain that the proposed model achieves compared to a system without temporal coding. In one example, for a system experiencing flat fading, low Doppler, and imperfect CSI, we find that the increase in PSNR compared to a system without time diversity is as much as 9.4 dB

    Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indicationsβ€”a review

    Get PDF
    Item does not contain fulltextBACKGROUND: The objective of this review is to evaluate the efficacy of Pulsed Radiofrequency (PRF) treatment in chronic pain management in randomized clinical trials (RCTs) and well-designed observational studies. The physics, mechanisms of action, and biological effects are discussed to provide the scientific basis for this promising modality. METHODS: We systematically searched for clinical studies on PRF. We searched the MEDLINE (PubMed) and EMBASE database, using the free text terms: pulsed radiofrequency, radio frequency, radiation, isothermal radiofrequency, and combination of these. We classified the information in two tables, one focusing only on RCTs, and another, containing prospective studies. Date of last electronic search was 30 May 2010. The methodological quality of the presented reports was scored using the original criteria proposed by Jadad et al. FINDINGS: We found six RCTs that evaluated the efficacy of PRF, one against corticosteroid injection, one against sham intervention, and the rest against conventional RF thermocoagulation. Two trials were conducted in patients with lower back pain due to lumbar zygapophyseal joint pain, one in cervical radicular pain, one in lumbosacral radicular pain, one in trigeminal neuralgia, and another in chronic shoulder pain. CONCLUSION: From the available evidence, the use of PRF to the dorsal root ganglion in cervical radicular pain is compelling. With regards to its lumbosacral counterpart, the use of PRF cannot be similarly advocated in view of the methodological quality of the included study. PRF application to the supracapular nerve was found to be as efficacious as intra-articular corticosteroid in patients with chronic shoulder pain. The use of PRF in lumbar facet arthropathy and trigeminal neuralgia was found to be less effective than conventional RF thermocoagulation techniques

    Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase

    Get PDF
    The peptides angiotensin IV and LVV-hemorphin 7 were found to enhance memory in a number of memory tasks and reverse the performance deficits in animals with experimentally induced memory loss. These peptides bound specifically to the enzyme insulin-regulated aminopeptidase (IRAP), which is proposed to be the site in the brain that mediates the memory effects of these peptides. However, the mechanism of action is still unknown but may involve inhibition of the aminopeptidase activity of IRAP, since both angiotensin IV and LVV-hemorphin 7 are competitive inhibitors of the enzyme. IRAP also has another functional domain that is thought to regulate the trafficking of the insulin-responsive glucose transporter GLUT4, thereby influencing glucose uptake into cells. Although the exact mechanism by which the peptides enhance memory is yet to be elucidated, IRAP still represents a promising target for the development of a new class of cognitive enhancing agents

    Subcarrier Assignment and Power Allocation for Device-to-Device Video Transmission in Rayleigh Fading Channels

    No full text
    Subcarrier assignment and power allocation for device-to-device (D2D) video transmission using a filter bank multicarrier waveform in a Rayleigh fading environment are investigated. We analyze the co-channel interference between D2D pairs, and propose a cross-layer algorithm with a subcarrier assignment outer loop and a power allocation inner loop, which aims to optimize the overall video quality. Unlike the non-convexity in physical layer power allocation for maximizing the total throughput, the cross-layer power allocation problem is convex under certain conditions, so a high quality solution for power allocation can be efficiently found. Simulation results demonstrate a higher overall video quality by the proposed cross-layer algorithm compared with baseline algorithms

    Resource allocation and performance analysis for multiuser video transmission over doubly selective channels

    Get PDF
    We consider an uplink multicarrier system with multiple video users who want to send compressed video data to the base station. In the time domain, we model the time-varying channel using Jakes' model, and in the frequency domain, each subcarrier is assumed to be independently fading. The video is scalably coded in units of a group of pictures (GOP), and users have different video rate distortion (RD) functions. At the beginning of the GOP, the base station collects both the RD information and the instantaneous channel state information (CSI) for subcarrier allocation purposes. We design a cross-layer resource allocation algorithm to assign subcarriers to users based on both the demand of the video and the quality of the channel. Once the resource allocation decision is made, the users then periodically adapt the modulation format of the subcarriers allocated according to the evolution of the CSI for the duration of the GOP. We show that our cross-layer resource allocation robustly outperforms two baseline algorithms, each of which uses only one layer of information for resource allocation
    • …
    corecore