67 research outputs found

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Structural Model of the Rev Regulatory Protein from Equine Infectious Anemia Virus

    Get PDF
    Rev is an essential regulatory protein in the equine infectious anemia virus (EIAV) and other lentiviruses, including HIV-1. It binds incompletely spliced viral mRNAs and shuttles them from the nucleus to the cytoplasm, a critical prerequisite for the production of viral structural proteins and genomic RNA. Despite its important role in production of infectious virus, the development of antiviral therapies directed against Rev has been hampered by the lack of an experimentally-determined structure of the full length protein. We have used a combined computational and biochemical approach to generate and evaluate a structural model of the Rev protein. The modeled EIAV Rev (ERev) structure includes a total of 6 helices, four of which form an anti-parallel four-helix bundle. The first helix contains the leucine-rich nuclear export signal (NES). An arginine-rich RNA binding motif, RRDRW, is located in a solvent-exposed loop region. An ERLE motif required for Rev activity is predicted to be buried in the core of modeled structure where it plays an essential role in stabilization of the Rev fold. This structural model is supported by existing genetic and functional data as well as by targeted mutagenesis of residues predicted to be essential for overall structural integrity. Our predicted structure should increase understanding of structure-function relationships in Rev and may provide a basis for the design of new therapies for lentiviral diseases

    Mycobacterium tuberculosis Transcriptional Adaptation, Growth Arrest and Dormancy Phenotype Development Is Triggered by Vitamin C

    Get PDF
    BACKGROUND: Tubercle bacilli are thought to persist in a dormant state during latent tuberculosis (TB) infection. Although little is known about the host factors that induce and maintain Mycobacterium tuberculosis (M. tb) within latent lesions, O(2) depletion, nutrient limitation and acidification are some of the stresses implicated in bacterial dormancy development/growth arrest. Adaptation to hypoxia and exposure to NO/CO is implemented through the DevRS/DosT two-component system which induces the dormancy regulon. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that vitamin C (ascorbic acid/AA) can serve as an additional signal to induce the DevR regulon. Physiological levels of AA scavenge O(2) and rapidly induce the DevR regulon at an estimated O(2) saturation of <30%. The kinetics and magnitude of the response suggests an initial involvement of DosT and a sustained DevS-mediated response during bacterial adaptation to increasing hypoxia. In addition to inducing DevR regulon mechanisms, vitamin C induces the expression of selected genes previously shown to be responsive to low pH and oxidative stress, triggers bacterial growth arrest and promotes dormancy phenotype development in M. tb grown in axenic culture and intracellularly in THP-1 cells. CONCLUSIONS/SIGNIFICANCE: Vitamin C mimics multiple intracellular stresses and has wide-ranging regulatory effects on gene expression and physiology of M. tb which leads to growth arrest and a 'dormant' drug-tolerant phenotype, but in a manner independent of the DevRS/DosT system. The 'AA-dormancy infection model' offers a potential alternative to other models of non-replicating persistence of M. tb and may be useful for investigating host-'dormant' M. tb interactions. Our findings offer a new perspective on the role of nutritional factors in TB and suggest a possible role for vitamin C in TB

    The Combined Dexamethasone/CRH Test (DEX/CRH Test) and Prediction of Acute Treatment Response in Major Depression

    Get PDF
    In this study the predictive value of the combined dexamethasone/CRH test (DEX/CRH test) for acute antidepressant response was investigated. In 114 depressed inpatients suffering from unipolar or bipolar depression (sample 1) the DEX/CRH test was performed at admission and shortly before discharge. During their stay in the hospital patients received different antidepressant treatment regimens. At admission, the rate of nonsuppression (basal cortisol levels >75.3 nmol/l) was 24.6% and was not related to the later therapeutic response. Moreover, 45 out of 114 (39.5%) patients showed an enhancement of HPA axis function at discharge in spite of clinical improvement. In a second sample, 40 depressed patients were treated either with reboxetine or mirtazapine for 5 weeks. The DEX/CRH test was performed before, after 1 week, and after 5 weeks of pharmacotherapy. Attenuation of HPA axis activity after 1 week was associated with a more pronounced alleviation of depressive symptoms after 5-week mirtazapine treatment, whereas downregulation of HPA system activity after 5 weeks was related to clinical response to reboxetine. However, early improvement of HPA axis dysregulation was not necessarily followed by a beneficial treatment outcome. Taken together, performance of a single DEX/CRH test does not predict the therapeutic response. The best predictor for response seems to be an early attenuation of HPA axis activity within 1 or 2 weeks. However, early improvement of HPA system dysfunction is not a sufficient condition for a favourable response. Since a substantial part of depressive patients display a persistence of HPA axis hyperactivity at discharge, downregulation of HPA system function is not a necessary condition for acute clinical improvement either. Our data underline the importance of HPA axis dysregulation for treatment outcome in major depression, although restoration of HPA system dysfunction seems to be neither a necessary nor a sufficient determinant for acute treatment response

    Innate Immune Response of Human Plasmacytoid Dendritic Cells to Poxvirus Infection Is Subverted by Vaccinia E3 via Its Z-DNA/RNA Binding Domain

    Get PDF
    Plasmacytoid dendritic cells (pDCs) play important roles in antiviral innate immunity by producing type I interferon (IFN). In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-Ξ± and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55Β°C for 1β€…h) gains the ability to induce IFN-Ξ± and TNF in primary human pDCs. Induction of IFN-Ξ± in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i) vaccinia virus, but not myxoma virus, expresses inhibitor(s) of the poxvirus sensing pathway(s) in pDCs; and (ii) Heat-VAC infection fails to produce inhibitor(s) but rather produces novel activator(s), likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029) lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating properties of myxoma virus

    Construction of 3D models of the CYP11B family as a tool to predict ligand binding characteristics

    Get PDF
    Aldosterone is synthesised by aldosterone synthase (CYP11B2). CYP11B2 has a highly homologous isoform, steroid 11Ξ²-hydroxylase (CYP11B1), which is responsible for the biosynthesis of aldosterone precursors and glucocorticoids. To investigate aldosterone biosynthesis and facilitate the search for selective CYP11B2 inhibitors, we constructed three-dimensional models for CYP11B1 and CYP11B2 for both human and rat. The models were constructed based on the crystal structure of Pseudomonas Putida CYP101 and Oryctolagus Cuniculus CYP2C5. Small steric active site differences between the isoforms were found to be the most important determinants for the regioselective steroid synthesis. A possible explanation for these steric differences for the selective synthesis of aldosterone by CYP11B2 is presented. The activities of the known CYP11B inhibitors metyrapone, R-etomidate, R-fadrazole and S-fadrazole were determined using assays of V79MZ cells that express human CYP11B1 and CYP11B2, respectively. By investigating the inhibitors in the human CYP11B models using molecular docking and molecular dynamics simulations we were able to predict a similar trend in potency for the inhibitors as found in the inΒ vitro assays. Importantly, based on the docking and dynamics simulations it is possible to understand the enantioselectivity of the human enzymes for the inhibitor fadrazole, the R-enantiomer being selective for CYP11B2 and the S-enantiomer being selective for CYP11B1

    The effects and determinants of exercise participation in first-episode psychosis: A qualitative study

    Get PDF
    Β© 2016 Firth et al. Background: Previous qualitative studies have found that exercise may facilitate symptomatic and functional recovery in people with long-term schizophrenia. This study examined the perceived effects of exercise as experienced by people in the early stages of psychosis, and explored which aspects of an exercise intervention facilitated or hindered their engagement. Methods: Nineteen semi-structured interviews were conducted with early intervention service users who had participated in a 10-week exercise intervention. Interviews discussed people's incentives and barriers to exercise, short- and long-term effects, and opinions on optimal interventions. A thematic analysis was applied to determine the prevailing themes. Results: The intervention was perceived as beneficial and engaging for participants. The main themes were (a) exercise alleviating psychiatric symptoms, (b) improved self-perceptions following exercise, and (c) factors determining exercise participation, with three respective sub-themes for each. Conclusions: Participants explained how exercise had improved their mental health, improved their confidence and given them a sense of achievement. Autonomy and social support were identified as critical factors for effectively engaging people with first-episode psychosis in moderate-to-vigorous exercise. Implementing such programs in early intervention services may lead to better physical health, symptom management and social functioning among service users. Trial registration: Current Controlled Trials ISRCTN09150095. Registered 10 December 2013
    • …
    corecore