328 research outputs found

    Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraurethral electrical stimulation (IES) of pudendal afferent nerve fibers can evoke both excitatory and inhibitory bladder reflexes in cats. These pudendovesical reflexes are a potential substrate for restoring bladder function in persons with spinal cord injury or other neurological disorders. However, the complex distribution of pudendal afferent fibers along the lower urinary tract presents a challenge when trying to determine the optimal geometry and position of IES electrodes for evoking these reflexes. This study aimed to determine the optimal intraurethral electrode configuration(s) and locations for selectively activating targeted pudendal afferents to aid future preclinical and clinical investigations.</p> <p>Methods</p> <p>A finite element model (FEM) of the male cat urethra and surrounding structures was generated to simulate IES with a variety of electrode configurations and locations. The activating functions (AFs) along pudendal afferent branches innervating the cat urethra were determined. Additionally, the thresholds for activation of pudendal afferent branches were measured in α-chloralose anesthetized cats.</p> <p>Results</p> <p>Maximum AFs evoked by intraurethral stimulation in the FEM and in vivo threshold intensities were dependent on stimulation location and electrode configuration.</p> <p>Conclusions</p> <p>A ring electrode configuration is ideal for IES. Stimulation near the urethral meatus or prostate can activate the pudendal afferent fibers at the lowest intensities, and allowed selective activation of the dorsal penile nerve or cranial sensory nerve, respectively. Electrode location was a more important factor than electrode configuration for determining stimulation threshold intensity and nerve selectivity.</p

    Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline

    Full text link
    From medical charts to national census, healthcare has traditionally operated under a paper-based paradigm. However, the past decade has marked a long and arduous transformation bringing healthcare into the digital age. Ranging from electronic health records, to digitized imaging and laboratory reports, to public health datasets, today, healthcare now generates an incredible amount of digital information. Such a wealth of data presents an exciting opportunity for integrated machine learning solutions to address problems across multiple facets of healthcare practice and administration. Unfortunately, the ability to derive accurate and informative insights requires more than the ability to execute machine learning models. Rather, a deeper understanding of the data on which the models are run is imperative for their success. While a significant effort has been undertaken to develop models able to process the volume of data obtained during the analysis of millions of digitalized patient records, it is important to remember that volume represents only one aspect of the data. In fact, drawing on data from an increasingly diverse set of sources, healthcare data presents an incredibly complex set of attributes that must be accounted for throughout the machine learning pipeline. This chapter focuses on highlighting such challenges, and is broken down into three distinct components, each representing a phase of the pipeline. We begin with attributes of the data accounted for during preprocessing, then move to considerations during model building, and end with challenges to the interpretation of model output. For each component, we present a discussion around data as it relates to the healthcare domain and offer insight into the challenges each may impose on the efficiency of machine learning techniques.Comment: Healthcare Informatics, Machine Learning, Knowledge Discovery: 20 Pages, 1 Figur

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait

    Get PDF
    Reliably interfacing a nerve with an electrode array is one of the approaches to restore motor and sensory functions after an injury to the peripheral nerve. Accomplishing this with current technologies is challenging as the electrode-neuron interface often degrades over time, and surrounding myoelectric signals contaminate the neuro-signals in awake, moving animals. The purpose of this study was to evaluate the potential of microchannel electrode implants to monitor over time and in freely moving animals, neural activity from regenerating nerves. We designed and fabricated implants with silicone rubber and elastic thin-film metallization. Each implant carries an eight-by-twelve matrix of parallel microchannels (of 120\u2009 7\u2009110\u2009\u3bcm2 cross-section and 4\u2009mm length) and gold thin-film electrodes embedded in the floor of ten of the microchannels. After sterilization, the soft, multi-lumen electrode implant is sutured between the stumps of the sciatic nerve. Over a period of three months and in four rats, the microchannel electrodes recorded spike activity from the regenerating sciatic nerve. Histology indicates mini-nerves formed of axons and supporting cells regenerate robustly in the implants. Analysis of the recorded spikes and gait kinematics over the ten-week period suggests firing patterns collected with the microchannel electrode implant can be associated with different phases of gait

    Scapinin, the Protein Phosphatase 1 Binding Protein, Enhances Cell Spreading and Motility by Interacting with the Actin Cytoskeleton

    Get PDF
    Copyright (c) 2009 Sagara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Scapinin, also named phactr3, is an actin and protein phosphatase 1 (PP1) binding protein, which is expressed in the adult brain and some tumor cells. At present, the role(s) of scapinin in the brain and tumors are poorly understood. We show that the RPEL-repeat domain of scapinin, which is responsible for its direct interaction with actin, inhibits actin polymerization in vitro. Next, we established a Hela cell line, where scapinin expression was induced by tetracycline. In these cells, expression of scapinin stimulated cell spreading and motility. Scapinin was colocalized with actin at the edge of spreading cells. To explore the roles of the RPEL-repeat and PP1-binding domains, we expressed wild-type and mutant scapinins as fusion proteins with green fluorescence protein (GFP) in Cos7 cells. Expression of GFP-scapinin (wild type) also stimulated cell spreading, but mutation in the RPEL-repeat domain abolished both the actin binding and the cell spreading activity. PP1-binding deficient mutants strongly induced cell retraction. Long and branched cytoplasmic processes were developed during the cell retraction. These results suggest that scapinin enhances cell spreading and motility through direct interaction with actin and that PP1 plays a regulatory role in scapinin-induced morphological changes.ArticlePLOS ONE. 4(1):e4247 (2009)journal articl

    Feeding Cues and Injected Nutrients Induce Acute Expression of Multiple Clock Genes in the Mouse Liver

    Get PDF
    The circadian clock is closely associated with energy metabolism. The liver clock can rapidly adapt to a new feeding cycle within a few days, whereas the lung clock is gradually entrained over one week. However, the mechanism underlying tissue-specific clock resetting is not fully understood. To characterize the rapid response to feeding cues in the liver clock, we examined the effects of a single time-delayed feeding on circadian rhythms in the liver and lungs of Per2::Luc reporter knockin mice. After adapting to a night-time restricted feeding schedule, the mice were fed according to a 4, 8, or 13 h delayed schedule on the last day. The phase of the liver clock was delayed in all groups with delayed feeding, whereas the lung clock remained unaffected. We then examined the acute response of clock and metabolism-related genes in the liver using focused DNA-microarrays. Clock mutant mice were bred under constant light to attenuate the endogenous circadian rhythm, and gene expression profiles were determined during 24 h of fasting followed by 8 h of feeding. Per2 and Dec1 were significantly increased within 1 h of feeding. Real-time RT-PCR analysis revealed a similarly acute response in hepatic clock gene expression caused by feeding wild type mice after an overnight fast. In addition to Per2 and Dec1, the expression of Per1 increased, and that of Rev-erbα decreased in the liver within 1 h of feeding after fasting, whereas none of these clock genes were affected in the lung. Moreover, an intraperitoneal injection of glucose combined with amino acids, but not either alone, reproduced a similar hepatic response. Our findings show that multiple clock genes respond to nutritional cues within 1 h in the liver but not in the lung

    The role of socio-economic status in the decision making on diagnosis and treatment of oesophageal cancer in The Netherlands

    Get PDF
    In the United States (USA), a correlation has been demonstrated between socio-economic status (SES) of patients on the one hand, and tumour histology, stage of the disease and treatment modality of various cancer types on the other hand. It is unknown whether such correlations are also involved in patients with oesophageal cancer in The Netherlands. Between 1994 and 2003, 888 oesophageal cancer patients were included in a prospective database with findings on the diagnostic work-up and treatment of oesophageal cancer. Socio-economic status of patients was defined as the average net yearly income. Linear-by-linear association testing revealed that oesophageal adenocarcinoma was more frequently observed in patients with higher SES and squamous cell carcinoma in patients with lower SES (P=0.02). Multivariable logistic regression analysis showed no correlation between SES and staging procedures and preoperative TNM stage. The adjusted odds ratio (OR) for stent placement was 0.82 (95% CI 0.71–0.95), indicating that with an increase in SES by 1200 €, the likelihood that a stent was placed declined by 18%. Patients with a higher SES more frequently underwent resection or were treated with chemotherapy (OR: 1.15; 95% CI 1.01–1.32 and OR: 1.16; 95% CI 1.02–1.32, respectively). Socio-economic factors are involved in oesophageal cancer in The Netherlands, as patients with a higher SES are more likely to have an adenocarcinoma and patients with a lower SES a squamous cell carcinoma. Moreover, the correlations between SES and different treatment modalities suggest that both patient and doctor determinants contribute to the decision on the most optimal treatment modality in patients with oesophageal cancer

    Separability of neural responses to standardised mechanical stimulation of limbs

    Get PDF
    Abstract Considerable scientific and technological efforts are currently being made towards the development of neural prostheses. Understanding how the peripheral nervous system responds to electro-mechanical stimulation of the limb, will help to inform the design of prostheses that can restore function or accelerate recovery from injury to the sensory motor system. However, due to differences in experimental protocols, it is difficult, if not impossible, to make meaningful comparisons between different peripheral nerve interfaces. Therefore, we developed a low-cost electronic system to standardise the mechanical stimulation of a rat’s hindpaw. Three types of mechanical stimulations, namely, proprioception, touch and nociception were delivered to the limb and the electroneurogram signals were recorded simultaneously from the sciatic nerve with a 16-contact cuff electrode. For the first time, results indicate separability of neural responses according to stimulus type as well as intensity. Statistical analysis reveal that cuff contacts placed circumferentially, rather than longitudinally, are more likely to lead to higher classification rates. This flexible setup may be readily adapted for systematic comparison of various electrodes and mechanical stimuli in rodents. Hence, we have made its electro-mechanical design and computer programme available onlin

    Origin and insertion of the medial patellofemoral ligament: a systematic review of anatomy.

    Get PDF
    PURPOSE: The medial patellofemoral ligament (MPFL) is the major medial soft-tissue stabiliser of the patella, originating from the medial femoral condyle and inserting onto the medial patella. The exact position reported in the literature varies. Understanding the true anatomical origin and insertion of the MPFL is critical to successful reconstruction. The purpose of this systematic review was to determine these locations. METHODS: A systematic search of published (AMED, CINAHL, MEDLINE, EMBASE, PubMed and Cochrane Library) and unpublished literature databases was conducted from their inception to the 3 February 2016. All papers investigating the anatomy of the MPFL were eligible. Methodological quality was assessed using a modified CASP tool. A narrative analysis approach was adopted to synthesise the findings. RESULTS: After screening and review of 2045 papers, a total of 67 studies investigating the relevant anatomy were included. From this, the origin appears to be from an area rather than (as previously reported) a single point on the medial femoral condyle. The weighted average length was 56 mm with an 'hourglass' shape, fanning out at both ligament ends. CONCLUSION: The MPFL is an hourglass-shaped structure running from a triangular space between the adductor tubercle, medial femoral epicondyle and gastrocnemius tubercle and inserts onto the superomedial aspect of the patella. Awareness of anatomy is critical for assessment, anatomical repair and successful surgical patellar stabilisation. LEVEL OF EVIDENCE: Systematic review of anatomical dissections and imaging studies, Level IV
    • …
    corecore