1,181 research outputs found
Managing marine turtles: A study of marine turtle conservation science and policy.
Marine turtles are an ancient group of reptiles that have been used by humans as a source of protein for over 7,000 years. In recent decades, acknowledgement of the various threats to marine turtles, including the deleterious impact of historical and contemporary use on many populations, led the International Union for the Conservation of Nature (IUCN) to list all seven extant species of marine turtle on their Red List of Threatened Species. Consequently, marine turtles are often given protected status in the national legislation of countries around the world, despite the existence of ongoing use cultures in communities that live with marine turtles. Conservation strategies are challenged by the migratory nature of marine turtles, which have complex life histories typically involving the use of habitats in the jurisdictions of multiple sovereign states as well as the high seas. As a result, a suite of multi-lateral environmental agreements (MEAs) list marine turtles in the most highly protective categories. Thus, governments of sovereign states that have acceded to the various MEAs are committed to conservation strategies requiring national action and cooperative multi-lateral action, which can conflict with interests of communities with a tradition of marine turtle consumption. In this thesis I provide examples of how contemporary scientific research methods can elucidate the migratory behaviours of marine turtles, and can help define range of populations subject to national conservation action and use. I examine specific examples of how this information can inform national and multi-lateral conservation policies and strategies; how those policies and strategies interact and impact on traditional cultures of marine turtle use in the UK Overseas Territories in the Caribbean; and provide an example of the potential benefits of engaging stakeholders with contemporary research methods. This thesis highlights the utility of a multi-disciplinary approach to research underpinning marine turtle conservation and management, which acknowledges the limitations of MEAs and national government capacity, and which incorporates participation of those communities engaged in marine turtle consumption.European Social Fund, Marine Conservation Societ
Marine turtle harvest in a mixed small-scale fishery: Evidence for revised management measures
Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Ocean and Coastal Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ocean and Coastal Management, 2013, Vol. 82, pp. 34 – 42 DOI: http://dx.doi.org/10.1016/j.ocecoaman.2013.05.004Small-scale fisheries (SSF) account for around half of the world's marine and inland fisheries, but their impact on the marine environment is usually under-estimated owing to difficulties in monitoring and regulation. Successful management of mixed SSF requires holistic approaches that sustainably exploit target species, consider non-target species and maintain fisher livelihoods. For two years, we studied the marine turtle fishery in the Turks and Caicos Islands (TCI) in the Wider Caribbean Region, where the main export fisheries are queen conch (Strombus gigas) and the spiny lobster (Panulirus argus); with fin-fish, green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) taken for domestic consumption. We evaluate the turtle harvest in relation to the other fisheries and recommend legislation and management alternatives. We demonstrate the connectivity between multi-species fisheries and artisanal turtle capture: with increasing lobster catch-per-unit-effort (CPUE), hawksbill catch increased whilst green turtle catch decreased. With increasing conch CPUE, hawksbill catch declined and there was no demonstrable effect on green turtle catch. We estimate 176–324 green and 114–277 hawksbill turtles are harvested annually in TCI: the largest documented legal hawksbill fishery in the western Atlantic. Of particular concern is the capture of adult turtles. Current legislation focuses take on larger individuals that are key to population maintenance. Considering these data we recommend the introduction of maximum size limits for both species and a closed season on hawksbill take during the lobster fishing season. Our results highlight the need to manage turtles as part of a broader approach to SSF management
Taxonomic distinctness in the diet of two sympatric marine turtle species
Marine turtles are considered keystone consumers in tropical coastal ecosystems and their decline through overexploitation has been implicated in the deterioration of reefs and seagrass pastures in the Caribbean. In the present study, we analysed stomach contents of green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) harvested in the legal turtle fishery of the Turks and Caicos Islands (Caribbean) during 2008–2010. Small juveniles to adult-sized turtles were sampled. Together with data from habitat surveys, we assessed diet composition and the taxonomic distinctness (and other species diversity measures) in the diets of these sympatric marine turtle species. The diet of green turtles (n = 92) consisted of a total of 47 taxa: including three species of seagrass (present in 99% of individuals), 29 species of algae and eight sponge species. Hawksbill turtles (n = 45) consumed 73 taxa and were largely spongivorous (16 species; sponges present in 100% of individuals) but also foraged on 50 species of algae (present in 73% of individuals) and three species of seagrass. Plastics were found in trace amounts in 4% of green turtle and 9% of hawksbill turtle stomach samples. We expected to find changes in diet that might reflect ontogenetic shifts from small (oceanic-pelagic) turtles to larger (coastal-benthic) turtles. Dietary composition (abundance and biomass), however, did not change significantly with turtle size, although average taxonomic distinctness was lower in larger green turtles. There was little overlap in prey between the two turtle species, suggesting niche separation. Taxonomic distinctness routines indicated that green turtles had the most selective diet, whereas hawksbill turtles were less selective than expected when compared with the relative frequency and biomass of diet items. We discuss these findings in relation to the likely important trophic roles that these sympatric turtle species play in reef and seagrass habitats.This work was funded by Simon &
Anne Notley, MCS, and Natural Environment Research Council (CASE PhD
studentship to TS with MCS as CASE partners, Ref: NE/F01385X/1)
Chronic non-specific low back pain - sub-groups or a single mechanism?
Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a
considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions
for chronic non-specific low back pain indicate limited effectiveness for most commonly applied
interventions and approaches.
Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of
effectiveness is at odds with their clinical experience of managing patients with back pain. A
common explanation for this discrepancy is the perceived heterogeneity of patients with chronic
non-specific low back pain. It is felt that the effects of treatment may be diluted by the application
of a single intervention to a complex, heterogeneous group with diverse treatment needs. This
argument presupposes that current treatment is effective when applied to the correct patient.
An alternative perspective is that the clinical trials are correct and current treatments have limited
efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important
that the sub-grouping paradigm is closely examined. This paper argues that there are numerous
problems with the sub-grouping approach and that it may not be an important reason for the
disappointing results of clinical trials. We propose instead that current treatment may be ineffective
because it has been misdirected. Recent evidence that demonstrates changes within the brain in
chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of
cortical reorganisation and degeneration. This perspective offers interesting insights into the
chronic low back pain experience and suggests alternative models of intervention.
Summary: The disappointing results of clinical research are commonly explained by the failure of
researchers to adequately attend to sub-grouping of the chronic non-specific low back pain
population. Alternatively, current approaches may be ineffective and clinicians and researchers may
need to radically rethink the nature of the problem and how it should best be managed
Deriving a mutation index of carcinogenicity using protein structure and protein interfaces
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
Quantitative estimation of tissue blood flow rate
The rate of blood flow through a tissue (F) is a critical parameter for assessing the functional efficiency of a blood vessel network following angiogenesis. This chapter aims to provide the principles behind the estimation of F, how F relates to other commonly used measures of tissue perfusion, and a practical approach for estimating F in laboratory animals, using small readily diffusible and metabolically inert radio-tracers. The methods described require relatively nonspecialized equipment. However, the analytical descriptions apply equally to complementary techniques involving more sophisticated noninvasive imaging. Two techniques are described for the quantitative estimation of F based on measuring the rate of tissue uptake following intravenous administration of radioactive iodo-antipyrine (or other suitable tracer). The Tissue Equilibration Technique is the classical approach and the Indicator Fractionation Technique, which is simpler to perform, is a practical alternative in many cases. The experimental procedures and analytical methods for both techniques are given, as well as guidelines for choosing the most appropriate method
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Cell migration in paediatric glioma; characterisation and potential therapeutic targeting
Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours
Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective
This is the final version of the article. Available from the publisher via the DOI in this record.Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill
sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over
broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on
hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored
relationships between growth dynamics and climate indices. We compiled the largest ever data set
on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive
mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could
affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack
of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates
in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth
rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with
annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index
(correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines
in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming
waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are
complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats
of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey
selection, and prey abundance are affected by warming water temperatures is needed to understand how
climate change will affect productivity of consumers that live in association with coral reefs
- …
