238 research outputs found

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Principles of meiotic chromosome assembly revealed in S. cerevisiae

    Get PDF
    During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process

    Evidence for Centromere Drive in the Holocentric Chromosomes of Caenorhabditis

    Get PDF
    In monocentric organisms with asymmetric meiosis, the kinetochore proteins, such as CENH3 and CENP-C, evolve adaptively to counterbalance the deleterious effects of centromere drive, which is caused by the expansion of centromeric satellite repeats. The selection regimes that act on CENH3 and CENP-C genes have not been analyzed in organisms with holocentric chromosomes, although holocentrism is speculated to have evolved to suppress centromere drive. We tested both CENH3 and CENP-C for positive selection in several species of the holocentric genus Caenorhabditis using the maximum likelihood approach and sliding-window analysis. Although CENP-C did not show any signs of positive selection, positive selection has been detected in the case of CENH3. These results support the hypothesis that centromere drive occurs in Nematoda, at least in the telokinetic meiosis of Caenorhabditis

    MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program

    Get PDF
    Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN programme can extend existing bounds on well constrained channels such as N → νl+l− and N → l±π∓ while, thanks to the strong particle identification capabilities of liquid-Argon technology, also place bounds on often neglected channels such as N → νγ and N → νπ0. Furthermore, we consider the phenomenological impact of improved event timing information at the three detectors. As well as considering its role in background reduction, we note that if the light-detection systems in SBND and ICARUS can achieve nanosecond timing resolution, the effect of finite sterile neutrino mass could be directly observable, providing a smoking-gun signature for this class of models. We stress throughout that the search for heavy nearly-sterile neutrinos is a complementary new physics analysis to the search for eV-scale oscillations, and would extend the BSM programme of SBN while requiring no beam or detector modifications

    The importance of iron in long-term survival of maintenance hemodialysis patients treated with epoetin-alfa and intravenous iron: analysis of 9.5 years of prospectively collected data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients treated by maintenance hemodialysis the relationship to survival of hemoglobin level and administered epoetin-alfa and intravenous iron is controversial. The study aim was to determine effects on patient survival of administered epoetin-alfa and intravenous iron, and of hemoglobin and variables related to iron status.</p> <p>Methods</p> <p>The patients were 1774 treated by maintenance hemodialysis in 3 dialysis units in New York, NY from January 1998 to June, 2007. A patient-centered, coded, electronic patient record used in patient care enabled retrospective analysis of data collected prospectively. For survival analysis, patients were censored when transplanted, transferred to hemodialysis at home or elsewhere, peritoneal dialysis. Univariate Kaplan-Meier analysis was followed by multivariate analysis with Cox's regression, using as variables age, race, gender, major co-morbid conditions, epoetin-alfa and intravenous iron administered, and 15 laboratory tests.</p> <p>Results</p> <p>Median age was 59 years, epoetin-alfa (interquartile range) 18,162 (12,099, 27,741) units/week, intravenous iron 301 (202, 455) mg/month, survival 789 (354, 1489) days. Median hemoglobin was 116 (110, 120)g/L, transferrin saturation 29.7 (24.9, 35.1)%, serum ferritin 526 (247, 833) μg/L, serum albumin 39.0 (36.3, 41.5) g/L. Survival was better the higher the hemoglobin, best with > 120 g/L. Epoetin-alfa effect on survival was weak but had statistically significant interaction with intravenous iron. For intravenous iron, survival was best with 1–202 mg/month, slightly worse with 202–455 mg/month; it was worst with no intravenous iron, only slightly better with > 455 mg/month. Survival was worst with transferrin saturation ≤ 16%, serum ferritin ≤ 100 μg/L, best with transferrin saturation > 25%, serum ferritin > 600 μg/L The effects of each of hemoglobin, intravenous iron, transferrin saturation, and serum ferritin on survival were independently significant and not mediated by other predictors in the model.</p> <p>Conclusion</p> <p>Long term survival of maintenance hemodialysis patients was favorably affected by a relatively high hemoglobin level, by moderate intravenous iron administration, and by indicators of iron sufficiency. It was unfavorably influenced by a low hemoglobin level, and by indicators of iron deficiency.</p

    Population Genetics of GYPB and Association Study between GYPB*S/s Polymorphism and Susceptibility to P. falciparum Infection in the Brazilian Amazon

    Get PDF
    Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB) and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil.Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases); and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls). The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection.GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02). Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity.Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this parasite is associated with the GPB S+ variant in this population

    Proteomics as a Method for Early Detection of Cancer: A Review of Proteomics, Exhaled Breath Condensate, and Lung Cancer Screening

    Get PDF
    The study of expressed proteins in neoplasia is undergoing a revolution with the advent of proteomic analysis. Unlike genomic studies where individual changes may have no functional significance, protein expression is closely aligned with cellular activity. This perspective will review proteomics as a method of detecting markers of neoplasia with a particular emphasis on lung cancer and the potential to sample the lung by exhaled breath condensate (EBC). EBC collection is a simple, new, and noninvasive technique, which allows sampling of lower respiratory tract fluid. EBC enables the study of a wide variety of biological markers from low molecular weight mediators to macromolecules, such as proteins, in a range of pulmonary diseases. EBC may be applied to the detection of lung cancer where it could be a tool in early diagnosis. This perspective will explore the potential of applying proteomics to the EBC from lung cancer patients as an example of detecting potential biomarkers of disease and progression

    Fundamental Reform of Payment for Adult Primary Care: Comprehensive Payment for Comprehensive Care

    Get PDF
    Primary care is essential to the effective and efficient functioning of health care delivery systems, yet there is an impending crisis in the field due in part to a dysfunctional payment system. We present a fundamentally new model of payment for primary care, replacing encounter-based imbursement with comprehensive payment for comprehensive care. Unlike former iterations of primary care capitation (which simply bundled inadequate fee-for-service payments), our comprehensive payment model represents new investment in adult primary care, with substantial increases in payment over current levels. The comprehensive payment is directed to practices to include support for the modern systems and teams essential to the delivery of comprehensive, coordinated care. Income to primary physicians is increased commensurate with the high level of responsibility expected. To ensure optimal allocation of resources and the rewarding of desired outcomes, the comprehensive payment is needs/risk-adjusted and performance-based. Our model establishes a new social contract with the primary care community, substantially increasing payment in return for achieving important societal health system goals, including improved accessibility, quality, safety, and efficiency. Attainment of these goals should help offset and justify the costs of the investment. Field tests of this and other new models of payment for primary care are urgently needed
    corecore