71 research outputs found

    T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora

    Get PDF
    Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea

    Dihydrochalcones: Implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction

    Get PDF
    Flavonoids are a group of polyphenol compounds with known antioxidant activities. Among them, dihydrochalcones are mainly found in apple leaves (Malus domestica). Glycosylated dihydrochalcones were previously found in large amounts in leaves of two genotypes of Malus with contrasting resistance to fire blight, a bacterial disease caused by Erwinia amylovora. In the present study we demonstrate that soluble polyphenol patterns comprised phloridzin alone or in combination with two additional dihydrochalcones, identified as sieboldin and trilobatin. Presence of sieboldin in young leaves correlated well with a high 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Moreover, these leaves displayed enhanced tolerance to paraquat, a photooxidative-stress generating herbicide. Interestingly, phloridzin had a high activity in the oxygen radical absorbance capacity (ORAC) assay, but its presence alone in leaves did not correlate with tolerance to paraquat. In order to further characterise the activity of these compounds, we tested their ability to prevent oxidative-dependent formation of advanced glycation end-products (AGEs) and phenylephrine-induced contraction of isolated rat mesenteric arteries. The antioxidant capacity of sieboldin was clearly demonstrated by showing that this compound (i) prevented vasoconstriction and (ii) inhibited AGEs formation. Both assays provided interesting information concerning a potential use of sieboldin as a therapeutic. Hence, our results strongly argue for a bioactivity of dihydrochalcones as functional antioxidants in the resistance of Malus leaves to oxidative stress. In addition, we demonstrate for the first time that sieboldin is a powerful multipotent antioxidant, effective in preventing physiopathological processes. Further work should aim at demonstrating the potential use of this compound as a therapeutic in treating free radical-involving diseases

    QTL analysis of the genetic architecture determining resistance to fire blight in an apple progeny

    Get PDF
    Fire blight, caused by the bacterial pathogen Erwinia amylovora, is one of the most destructive diseases of apple (Malus x domestica). In order to analyse the genetic determinism of resistance to fire blight in apple, a quantitative trait analysis (QTL) approach was used. A F1 progeny of 164 individuals derived from a cross between the apple cultivars `Prima¿ and `Fiesta¿ was inoculated in greenhouse conditions. Seven copies per genotype were used. The length of the necrosis observed on shoots was scored 7 and 14 days after inoculation. The MapQTL software was used for QTL analyses, using two previously built maps of the parents, and the symptoms scored on shoots. Digenic interactions between all pairwise combinations of genetic markers were tested using a two-way ANOVA model with the SAS software. QTL were detected at the same locations both 7 and 14 days after inoculation. Two weak effect QTL deriving from `Prima¿ were detected on linkage groups (LG) 3 and LG16. One strong effect QTL deriving from `Fiesta¿ was detected on LG7 that explained 46.6% of the phenotypic variation observed in the progeny. Two additional significant (

    Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies

    Get PDF
    Although fire blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of apple (Malus x domestica) worldwide, no major, qualitative gene for resistance to this disease has been identified to date in apple. We conducted a quantitative trait locus (QTL) analysis in two F-1 progenies derived from crosses between the cultivars Fiesta and either Discovery or Prima. Both progenies were inoculated in the greenhouse with the same strain of E. amylovora, and the length of necrosis was scored 7 days and 14 days after inoculation. Additive QTLs were identified using the MAPQTL software, and digenic epistatic interactions, which are an indication of putative epistatic QTLs, were detected by two-way analyses of variance. A major QTL explaining 34.3-46.6% of the phenotypic variation was identified on linkage group (LG) 7 of Fiesta in both progenies at the same genetic position. Four minor QTLs were also identified on LGs 3, 12 and 13. In addition, several significant digenic interactions were identified in both progenies. These results confirm the complex polygenic nature of resistance to fire blight in the progenies studied and also reveal the existence of a major QTL on LG7 that is stable in two distinct genetic backgrounds. This QTL could be a valuable target in marker-assisted selection to obtain new, fire blight-resistant apple cultivars and forms a starting point for discovering the function of the genes underlying such QTLs involved in fire blight control

    Hypoxic Pulmonary Vasoconstriction in Humans:Tale or Myth

    Get PDF
    Hypoxic Pulmonary vasoconstriction (HPV) describes the physiological adaptive process of lungs to preserves systemic oxygenation. It has clinical implications in the development of pulmonary hypertension which impacts on outcomes of patients undergoing cardiothoracic surgery. This review examines both acute and chronic hypoxic vasoconstriction focusing on the distinct clinical implications and highlights the role of calcium and mitochondria in acute versus the role of reactive oxygen species and Rho GTPases in chronic HPV. Furthermore it identifies gaps of knowledge and need for further research in humans to clearly define this phenomenon and the underlying mechanism

    Experimental progress in positronium laser physics

    Get PDF

    Control of fireblight in European pome fruits

    No full text
    International audienc

    Evaluation with different isolates of Erwinia amylovora of the susceptibility to fire blight of apple cultivars

    No full text
    International audienc

    Crataegus and fire blight (Erwinia amylovora) interest of some clones as ornamentals

    No full text
    International audienc
    corecore