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Abstract: Hypoxic Pulmonary vasoconstriction (HPV) describes the physiological adaptive process of lungs to preserves systemic
oxygenation.  It  has clinical  implications in the development of pulmonary hypertension which impacts on outcomes of patients
undergoing cardiothoracic surgery. This review examines both acute and chronic hypoxic vasoconstriction focusing on the distinct
clinical implications and highlights the role of calcium and mitochondria in acute versus the role of reactive oxygen species and Rho
GTPases in chronic HPV. Furthermore it identifies gaps of knowledge and need for further research in humans to clearly define this
phenomenon and the underlying mechanism.
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INTRODUCTION

Hypoxic Pulmonary Vasoconstriction (HPV) is a fundamental physiological mechanism to redirect the blood from
poorly to better-aerated areas of lungs to optimize the ventilation perfusion matching [1]. Persistent hypoxia results in
increased pulmonary vascular resistance and right ventricular afterload, which leads to hypoxic pulmonary hypertension
(HPH) [2]. HPV was initially thought to be caused by alveolar hypoxia by means of local lung mechanism but recent
advances suggest that pulmonary artery smooth muscle cells (PASMC) constitute both the sensor and the transducer of
the hypoxic signal as well  as its  contractile effector [3].  A series of experiments performed to explain the HPV on
macroscopic and microscopic level has been reported although the underlying mechanism is not clear [4, 5]. However,
vast majority of experiments are performed in animals with little data available from humans. Experiments performed
on animals are highly dependent on the species studied and therefore generally inapplicable to humans. Therefore new
methodologies  are  needed  to  understand  the  human  disease  biology.  In  this  review we  concentrate  on  the  existing
evidence for HPV within humans and looking at the pulmonary vascular reactivity to acute and chronic hypoxia and the
role of endothelium in vessels size in HPV.

1. OVERVIEW OF THE PULMONARY CIRCULATION

Pulmonary circulation is the segment of cardiovascular system, which carries the blood to and from the lungs. Its
primary function is to oxygenate the deoxygenated blood that has returned to the right side of the heart. The oxygenated
(oxygen-rich) blood is then delivered to the left side of heart and thus the systemic circulation [6, 7] (Fig. 1).

1.1. Anatomy of Pulmonary Circulation

The vascular wall is made up of three layers; tunica intima (internal layer), tunica media (middle layer) and tunica
externa (outer layer)  [8, 9].  Endothelial cells are located in the intima and play an  important role in regulating vascular
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function  by  responding  to  neurotransmitters,  hormones  and  vasoactive  factors  [10].  The  endothelium  and  smooth
muscle are the vital components for maintenance of arterial tone and regulation of blood pressure. The main purpose of
the  arteries  is  to  deliver  the  blood  to  the  organs  with  high  pulse  pressure.  Arteries  can  broadly  be  divided  into
conducting arteries, conduit arteries (macro-vasculature) and resistance arteries (microvasculature) based on their size,
anatomical position and functionality. Conducting arteries are the largest in size and rich in elastic tissues which support
the vessels to expand and recoil to accommodate high changes in blood pressure and volume. The aorta, pulmonary
artery and carotid arteries are the main examples of conducting arteries [11].

Fig. (1). Schematic representation of pulmonary circulation. Red shows oxygen-rich CO2-poor blood. Blue shows oxygen-poor CO2-
rich blood.

Pulmonary arteries in particular are less muscular, more distensible and compressible compared to their systemic
counterpart and resistance pulmonary arterioles contain the most smooth muscle in the pulmonary vasculature [12, 13].
Bronchial circulation is a part of systemic circulation that provides nourishment to the lungs [14]. Pulmonary arteries
unlike systemic arteries are always hypoxic as they conduct relatively deoxygenated blood and the gas exchange occurs
at capillary level where lungs excrete carbon dioxide [15, 16].

1.2. Regulation of Pulmonary Circulation

Right ventricle and left ventricles are connected in series as is the case for the pulmonary and systemic circulation
[17]. The pulmonary circulatory flow is dependent on systemic blood coming to it through right heart as well as the
afterload that  is  determined by the aortic  pressure and systemic vascular  resistance [18,  19].  In addition to this  the
pulmonary circulation is also influenced by alveolar compression, gravity, body position and lung volume [20].

The  regional  ventilation  and  distribution  of  blood  flow in  lung  varies  from the  apex  to  the  base  in  the  upright
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position [21]. At the apex of the lung the alveolar pressure is higher than the pulmonary artery pressure that results in
wasted ventilation. On contrary at the base, the pulmonary pressure is higher than alveolar pressure that causes wasted
perfusion [22, 23]. This difference in matching of blood flow to ventilation determines the regional blood flow and
disrupts the gas exchange [24, 25].

At tissue level the release or inhibition of certain factors control regional pulmonary blood flow [26].Agonists of
smooth  muscle  contraction  such  as  endothelin  increase  the  pulmonary  artery  tone  [27,  28].  Nitric  oxide  and
acetylcholine are smooth muscle relaxants that are known factors to decrease the pulmonary artery tone [29 - 31].

The pulmonary circulation is a low pressure, low resistance and high flow circuit and depending on age the average
resistance is between 1 – 2.5 mmHg.min.L−1  [32]. Unlike systemic arterioles that dilate in response to hypoxia, the
pulmonary  arterioles  and  venules  constrict  when  exposed  to  hypoxia  [33].  This  phenomenon  is  known as  hypoxic
pulmonary vasoconstriction that causes diversion of pulmonary blood from poorly ventilated to well-oxygenated areas
of  lungs  to  preserve  systemic  oxygenation  [34].  This  vasoconstrictive  response  of  HPASMc  to  hypoxia  is  further
augmented when pulmonary vasculature exposed to hypercapnia and the combined hypoxic and hypercapnic effects are
additive not synergistic [35].

However if this short term beneficial role of HPV to facilitate perfusion and ventilation persist or alveolar hypoxia
become more widespread or if the hypoxic stimulus is not removed as in intrinsic lung disease, this results in increase in
pulmonary resistance and subsequent pulmonary hypertension [36, 37].

2. ACUTE HYPOXIC PULMONARY VASOCONSTRICTION

HPV in humans appears to have several components [38], the first acute phase occur within 5 minute with a mean
time constant of 151-160 (+/- 24.8-42) sec followed by a plateau phase of at least 20 minutes [39, 40]. A second phase
also known as sustained phase start after a latency period of 30 min and plateau at 2 hours [40] followed by a third
chronic phase taking upward of 8 hours [38, 41]. During the sustained hypoxic phase an initial temporary vasodilation
response is seen followed by secondary vasoconstriction period [42]. The precise underlying mechanism of HPV is still
uncertain  but  cells  in  the  endothelium  and/or  smooth  muscle  cells  are  involved  as  HPV  can  be  seen  in  isolated
pulmonary artery [43 - 45]. Fishman describes the role of nervous system and humoral agents as modulatory rather than
primary cause of HPV [46]. Both adrenergic and cholinergic nerve fibres are found in human lung tissue. α adrenergic
receptors are predominant both functionally and numerically in lungs as compared to β adrenergic receptors [47]. The
adrenergic system only contributes to maintain the initial resting tone needed for HPV while the cholinergic system was
found to play no role in the control of pulmonary circulation [48, 49]. This concept of little role of nervous system
modulatory role is further strengthened by the fact that HPV still persists in transplanted and denervated lungs [50].

2.1. Role of Calcium in Hypoxic Pulmonary Vasoconstriction

Pulmonary artery smooth muscle cells (PASMCs) are found in large arteries as well as in small arterioles [13] and
are believed to cause vasoconstriction in response to hypoxia by increasing the intracellular calcium (Ca2+). Intracellular
concentration of Ca2+  is mainly regulated by release of sarcoplasmic reticulum stored Ca2+,  extracellular Ca2+  influx
through voltage gated Ca2+ channels and receptors or store operated Ca2+ channels [51]. PASMCs membrane potential is
regulated by voltage gated K+ channels, which control the cytoplasmic Ca2+ concentration. Voltage gated K+ channels
cause vasoconstriction when exposed to acute hypoxia by increasing cytoplasmic Ca2+ concentration and may have a
role in some of the components of HPV response [52, 53]. Hypoxia depolarizes the membrane by reducing the outward
K+ current and leads to vasoconstriction by increasing the influx of Ca2+ through voltage gated Ca2+ channels.

Michelakis et al. demonstrated that pulmonary artery smooth muscle cells have the ability to sense oxygen and react
to  hypoxia  without  any  influence  from  surrounding  parenchyma  [54].  They  also  conclude  that  dissimilarities  in
systemic and pulmonary circulation response to hypoxia is due to the manifestation of different K+ channels that trigger
hyperpolarization  and  vasodilation  in  systemic  circulation  and  depolarization  and  vasoconstriction  in  pulmonary
circulation.

Tang et al. showed that the increase of calcium in PASMCs after acute hypoxia is due to voltage gated calcium
channels to some extent but largely due to transient receptor potential [TRP] channels [55]. TRP channels are cation
channels that are present in cellular membranes and involved in various cellular activities e.g. pain, touch, temperature
and osmolarity [56, 57]. Channel 6 of Canonical subfamily of TRP (TRPC6) are extensively expressed in HPASMc and
on activation by its mediators such as epoxyeicosatrienoic acids (EETs) induced hypoxic pulmonary vasoconstriction
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by increasing intracellular Ca2+ [55].

Vanilloid subtype of transient receptor potential channels (TRPV) also act as sensory channels for heat, pain touch
and osmotic stress [58]. TRPV channels are present in endothelium, perivascular nerves and vascular smooth muscle
cells  and its  sub-class TRPV4 is  expressed highly in pulmonary endothelial  cells  and human PASMCs [59].  Acute
hypoxia increase the EETs levels that activates the TRPV4, as depletion of EETs attenuated the TRPV6 induced HPV
[60]. Goldenberg et al. demonstrated that acute hypoxia induced TRPV4 to trigger HPV by increasing Ca2+ influx and
phosphorylation of myosin light chain in human PASMCs [61]. EETs activated TRCP6 and TRPV4 work in parallel to
each  other  and  form  heteromers  when  exposed  to  hypoxia,  which  increase  their  surface  expression  and  calcium
conductance capacity [62, 63].

Meng et al. demonstrated that arachidonic acid [AA] – a membrane phospholipid, attenuates the hypoxia induced
rise in intracellular Ca2+ and related vasoconstriction in human PASMCs [64]. Inhibition of endogenous AA production
by  diacyglycerol,  fatty  acid  hydrolysis  and  phospholipase  A  augments  pulmonary  vasoconstriction  and  increase
intracellular  Ca2+  level  through  TRP  channels,  voltage  gated  Ca2+  channel  and  Na+  -  Ca2+  exchanger.

Beside Ca2+ other important mediators such as reactive oxygen species generated during hypoxia. Under normoxic
conditions ROS are predominantly produced in mitochondria of pulmonary cells, suggesting that mitochondria might
play a role in HPV.

2.2. Role of Mitochondria/Reactive Oxygen Species (ROS) in Hypoxic Pulmonary Vasoconstriction

Mitochondria  are  essential  organelle,  which  contains  iron-sulphur  complexes,  and  proteins  within  the  inner
mitochondrial  membrane  that  generate  energy  through electron  shuttle  called  electron  transport  chain  [65].  During
oxygen  metabolism  stable  substances  like  hydrogen  peroxide  and  unstable  toxic  substances  such  as  hydroxyl  and
superoxide radicals are produced. These substances are collectively called reactive oxygen species and are produced
from I and III complexes of electron transport chain and NADPH oxidase [66]. Mitochondrial electron transport chain
is believed to act  as an oxygen sensor and facilitates hypoxic induced vascular smooth muscle cells contraction by
controlling different kinases and ion channels through ROS [67]. ROS act as an intercellular and intracellular secondary
messenger system and reacts with protein residue like cysteine to regulate different signalling pathway [68].

Mehta et al. established that hypoxia attenuates the production of ROS in human PASMCs [65]. These reduce ROS
augments  pulmonary vasoconstriction and subsequent  pulmonary hypertension through rise  in  intracellular  Ca2+.  In
addition to PASMCs, coronary artery smooth muscle cells [CASMCs] also show reduction in ROS production during
hypoxia. However these cells dilate instead of constricting and the reason for this differential contractile response is not
clear. Wang et al. suggested that this differential response to hypoxia in pulmonary and systemic vasculature might be
attributed to the way in which ROS regulate their ion channels [69].

Waypa et al. also showed that hypoxia reduces the mitochondrial production of ROS that results in the hypoxic
pulmonary vasoconstriction due to inhibition of voltage gated plasma membrane K+ (KV) channels [70]. Closure of KV

channels cause membrane depolarization and subsequent vasoconstriction though increases influx of Ca2+.

Freund-Michel et al. described the role of hypoxia induced mitochondrial alterations and mitochondrial dysfunction
that shift the oxidative phosphorylation energy production to glycolysis [71]. The resultant hyperpolarized mitochondria
reduced the production of  ROS and the metabolic  shift  to  increased glycolysis  increased the concentration of  non-
oxidized sugars, lipids and amino acids that are pre requisite to smooth muscle cells proliferation. Similarly Evans et al.
proved that inhibition of oxidative phosphorylation in mitochondria through LKB1 (liver kinase B1) – AMPK (amp
activated protein kinase) signalling pathway triggers hypoxic pulmonary vasoconstriction [72]. This demonstration of
hypoxia  induced  mitochondrial  dysfunction  in  pulmonary  artery  endothelium,  smooth  muscle  and  adventitia  of
pulmonary hypertension patients suggests that production of targeted mitochondrial therapies will provide effective
therapy for this life threatening disease [73, 74]

In contradiction to the above some studies have shown that hypoxia enhanced the production of ROS instead of
reducing it. Perez-Vizcaino et al. demonstrated that pulmonary vascular smooth muscle cells augment the production of
ROS particularly hydrogen peroxide when exposed to hypoxia [75]. Hypoxia induced ROS increase the intracellular
Ca2+ concentration and PASMCs contraction through modulation of protein kinase C, Rho kinases, ryanodine receptors
and voltage gated potassium K+ channels. In addition to vascular mitochondria and NADPH oxidases, ROS are also
produced from endothelial nitric oxide synthase (eNOS), arachidonic acid metabolism and xanthine oxidase.
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This controversy regarding ROS during hypoxia might be related to the duration of hypoxia. ROS production by
human PASMCs attenuates initially when exposed to brief period of hypoxia [65] but increases subsequently [76].

Fig. (2) provides an overview of mechanisms involved in acute hypoxic pulmonary vasoconstriction.

Fig.  (2).  Mechanism  of  acute  hypoxic  vasoconstriction  in  human  pulmonary  artery.  ROS=  reactive  oxygen  species,  SR=
sarcoplasmic reticulum, TRPC=transient receptor potential channels. Redox hypothesis: Hypoxia decreases the ROS level and cause
vasoconstriction through inhibition of K+ channels. Energy hypothesis: hypoxia shifts the energy production cycle and produces more
AMP that increases the intracellular Ca2+ through SR. ROS hypothesis: hypoxia augments the production of ROS that cause HPV
through SR induced release of Ca2+.

3. CHRONIC HYPOXIC PULMONARY VASOCONSTRICTION

Chronic hypoxia is coupled with refractory vasoconstriction and attenuated NO mediated vasodilation that expedites
human  PASMc  medial  hypertrophy  and  subsequent  pulmonary  hypertension  [77].  Production  of  reactive  oxygen
species such as hydrogen peroxide and superoxide and hydroxyl radicals in vascular smooth muscle cells is involved in
physiological regulation of vascular tone and vascular remodelling [78].

3.1. Role of ROS and Different Ions in Chronic Hypoxic Pulmonary Vasoconstriction

Wu et al. demonstrated that chronic hypoxia (PO2 = 30 mmHg for 48 h) cause increased ROS level in PASMCs
[76]. This increased ROS production induce a pathophysiological response that cause pulmonary vascular remodelling
and subsequent chronic hypoxia associated pulmonary hypertension [79].  Similarly Porter  et  al.  in his  experiments
showed  that  hypoxia  for  more  than  72  hours  significantly  induce  the  hydrogen  peroxide  (H2O2)  production  and
proliferation of  human pulmonary artery endothelial  cells  (HPAEC) [80].  The hypoxic induced generation of  H2O2

activates  the  arachidonate  5-lipoxygenase  (ALOX  5)  pathway  that  induced  HPAEC  proliferation  and  vascular
remodelling. Pharmacological blockade of ALOX 5 by zileuton or by MK-886 (inhibitors of 5 lipooxygenase activating
protein) attenuates hypoxia-induced proliferation of HPAEC.

Platoshyn  et  al.  showed  that  chronic  hypoxia  down  regulates  the  mRNA  and  protein  expression  of  plasma
membrane  voltage  gated  potassium  (KV)  channels  that  are  responsible  for  regulation  of  membrane  potential  and
intracellular  Ca2+  concentration.  The  resultant  membrane  depolarization  from  inhibition  of  KV  channels  results  in
amplified Ca2+ influx through voltage gated Ca2+ channels in PASMCs and mediates pulmonary vasoconstriction and
vascular smooth muscle cells proliferation [81]. Zhao et al. demonstrated that the chronic hypoxia leads to the enhanced
expression of Zinc transporter ZIP12 in human endothelial and smooth muscle cells [82]. This intracellular rise of Zinc
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plays  a  role  in  hypoxia  induced  pulmonary  smooth  cells  proliferation  as  inhibition  of  ZIP12  attenuates  HPASMc
proliferation and development of pulmonary hypertension. Pharmacological development of ZIP12 inhibitor can be a
novel treatment module for pulmonary hypertension management.

3.2. Role of Rho A and Rho B in Chronic Hypoxic Pulmonary Vasoconstriction

Rho GTPases is a family of signalling G Proteins, and are regulators of cytoskeletal dynamics, cell migration, cell
polarity, neuronal development, vesicle transport and cytokinesis [83]. Rho-A was the first identified member of Rho
GTPases family in 1985 [84].

Rho-A with its downstream factor, Rho Kinase (ROCK) mediated multiple cellular functions such as proliferation,
contraction, adhesion, migration and gene expression [85]. Rho-A/ROCK signalling pathway is involved in mediating
pulmonary artery hypertension, vasoconstriction and vascular remodelling. Inhibition of Rho-A/Rho kinase pathway by
sildenafil (cGMP specific phospho-diesterase inhibitor] proves beneficial in pulmonary hypertension patients due to its
vasodilatory effects [86].

Rho-B is  a  protein  homologous  to  Rho-A and  in  response  to  hypoxia  induced  pulmonary  vasoconstriction  and
vascular remodelling by inducing actin-myosin contractility, enhanced endothelial permeability and promotion of cell
growth  [87].  Rho-B  levels  significantly  increased  in  human  PASMCs  when  exposed  to  hypoxia.  PDGF/PDGFR
signalling  pathway  is  involved  in  Rho-B  mediated  PASMCs  proliferation  as  inhibition  of  PDGF receptor  tyrosine
kinase  by  imatinib  attenuates  the  effects  of  Rho-B.  This  shows that  Rho-B can  be  a  potential  therapeutic  target  to
prevent pulmonary hypertension in humans.

Fig.  (3)  summarizes  the  role  of  ROS  and  Rho  GTPases  family  in  human  chronic  hypoxic  pulmonary
vasoconstriction.

Fig. (3). Mechanism of chronic hypoxic vasoconstriction in human pulmonary artery. ROS = reactive oxygen species, Rho A and
Rho B are members of Rho GTPases family which is a family of G proteins. Chronic hypoxia induced Rho A and Rho b and ROS
production that results in smooth muscle cell proliferation, vascular remodelling and ultimately pulmonary artery hypertension.
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4.  ROLE  OF  PULMONARY  ARTERY  ENDOTHELIUM  CELLS  IN  HYPOXIC  PULMONARY
VASOCONSTRICTION

Vascular endothelium is a layer of specialized cells between vessel lumen and vascular smooth muscle cells and
produces several  active compounds including vasodilators  and vasoconstrictors  [88].  Endothelium derived relaxing
factor  [EDRF-NO],  endothelin,  lipooxygenase  and  cyclooxygenase  are  endothelial  vasoactive  agents  that  regulates
vascular tone [89].

4.1. Is Endothelium Necessary for HPV?

Hypoxia induced constriction of human pulmonary artery rings is dependent on endothelium was established by
Demiryurek et al. as denuding the endothelium markedly abolish the hypoxic vasoconstriction [44]. In contrary to this
Ohe et al. demonstrated that endothelium is not needed for hypoxia-induced vasoconstriction. They established that
human pulmonary artery strips [2mm in diameter] constrict in response to hypoxia and removal of endothelium instead
of  abolishing  actually  enhanced  hypoxia-induced  vasoconstriction  response  [45].  The  reason  for  this  controversial
response claimed in these studies is not very clear.

4.2. Role of Endothelial Nitric Oxide Synthase (eNOS) in HPV

Endothelial nitric oxide synthase (eNOS) is an enzyme that synthesizes nitric oxide (NO) in vascular endothelium
[90]. Nitric oxide regulates cellular proliferation, vascular tone, platelet aggregation and leukocyte adhesion [91].

Takemoto et al. demonstrated that prolonged hypoxia induced endothelial injury and diminished the production of
eNOS via Rho kinase (ROCK) induced cytoskeletal changes that results in hypoxia induced pulmonary hypertension
[92]. Hypoxia-induced ROCK expression results in decrease in eNOS mRNA and protein production in pulmonary
artery endothelial cells. However, Krotova et al. have shown that chronic hypoxia induced NO production in human
PAECs and this hypoxia-induced production of NO is further enhanced by inhibition of Arginase II [93]. Similarly
Beleslin-  Cokic  et  al.  showed  that  hypoxia  stimulates  NO  production,  which  is  independent  of  hypoxia-induced
reduction of eNOS gene expression [94]. This increase in NO production in response to hypoxia, appears to be the
compensatory mechanism of the body by inducing the production of other nitric oxide synthase (NOS) enzymes e.g.
iNOS.

Chovanec also demonstrated that the endothelium augment the production of NO and superoxide when exposed to
chronic  hypoxia  [95].  The  superoxide  with  NO  facilitates  the  remodelling  of  pulmonary  vasculature  that  is
characterized  by  tunica  media  thickening,  augmented  muscularity  and  PASMCs  proliferation  and  migration.
Superoxide-NO combination marked the onset of collagen cleavage via peroxynitrite release and the resulted collagen
fragments induce pulmonary vessels remodelling.

Ghrelin  a  peptide  hormone  produced  by  ghrelinergic  cells  in  gastrointestinal  tract  is  known  to  have  beneficial
effects on human pulmonary artery endothelial cell (HPAECs) function. Yang et al. demonstrated that hypoxia for 24
hours  risks  the  viability  of  endothelial  cells  and  ghrelin  can  inhibit  hypoxia  mediated  HPAECs  dysfunction  by
increasing  NO  production  and  eNOS  phosphorylation  [96].

Krotova et al. and Yu et al. demonstrated that human PAECs unlike PASMCs do not proliferate when exposed to
chronic hypoxia [93,  97].  This  reaction can be due to the fragility of  endothelial  cells  under hypoxic conditions as
studies show that hypoxia also increases the permeability of HPAECs [87].

Endothelium seems to play a modularity role in HPV and augments the hypoxic induced HPASMc response by
modulating their release of vasoconstrictor and vasodilator factors while PASMc remain the main contractile mechanics
as explained by Sylvester [98].

5. EFFECT OF VESSEL SIZE ON PULMONARY VASCULATURE REACTIVITY TO HYPOXIA

The  effect  of  hypoxia  on  human  pulmonary  artery  strips  (HPASs)  prepared  from  human  pulmonary  artery  of
diameter < 5 mm was examined by Hoshino et al. and established that the vessels constrict in response to hypoxia [43].
This hypoxia induced contractile response is enhanced when HPASs were pre stimulated with histamine. The response
was attenuated by depletion of intracellular and extracellular Ca2+ and by HA 1004 – a novel calcium antagonist.

Human  pulmonary  artery  rings  -  HPARs  [2mm  in  diameter]  were  demonstrated  by  Ohe  et  al.  to  constrict  in
response to hypoxia and removal of endothelium enhanced the hypoxia-induced vasoconstriction. Voltage gated Ca2+
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channels play a role in hypoxic vasoconstriction and pre stimulation is not a prerequisite [45].

Demiryurek et al. in their study on HPARs showed that hypoxia induced vasoconstriction in both smaller (0.38-0.68
mm) and larger (2.2 – 4.5 mm) diameter vessels under optimal resting conditions. This hypoxia-induced response is
enhanced in both sizes HPARSs when rings were pre constricted and removal of endothelium diminished the hypoxic
vasocontrictive response [44].

In contrary Ariyaratnam et al. demonstrated that larger HPARs (4 mm diameter) dilate in response to hypoxia and
constrict  when  exposed  to  hyperoxia  (95%  O2).  This  hypoxic  vasodilation  is  independent  to  nitric  oxide,  because
application of L-NAME had no effect. This study showed hyperoxic vasoconstriction was reliant on voltage gated Ca2+

channels as evidenced by inhibition of vasoconstriction when HPARs treated with nifedipine (Ca2+ channel blocker)
[99].

The reason of variation in response to different sized pulmonary vasculature to hypoxia and whether certain degree
of pre stimulation is necessary is not clear. More studies need to be performed to confirm whether internal diameter of
vessels and pre stimulation alters the reactivity of vessels to hypoxia.

SUMMARY AND CONCLUSION

Hypoxic pulmonary vasoconstriction is difficult to describe, as the underlying mechanism is complex. More than
one mechanism contributes to the overall effect seen in clinical practice. So far most of the research was conducted on
animals, which is not necessarily applicable on humans. In addition to this the reactivity of pulmonary vasculature to
hypoxia varies between species. Even the experiments that are performed on human shows variability that may be due
to variation in pulmonary vasculature reactivity to oxygen between healthy individuals and those who suffered from
significant pulmonary disease [100, 101]. It is worth mentioning here that the definition of acute (5min – 12 hours) and
chronic (2-7 days) hypoxia and the degree of hypoxia (0% O2–5% O2/5 – 30 mmHg) used for experiments on humans are
variable which give rise to discrepancies. We need to agree on a universal definition for acute and chronic hypoxia and
for degree of hypoxia to avoid such inconsistencies.

In  conclusion  the  precise  mechanism  by  which  hypoxia  stimulate  pulmonary  vasoconstriction  has  not  been
completely  elucidated.
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