57 research outputs found

    O'nyong-nyong Virus, Chad

    Get PDF
    We report the first laboratory-confirmed human infection with O'nyong-nyong virus in Chad. This virus was isolated from peripheral blood mononuclear cells of a patient with evidence of a seroconversion to a virus related to Chikungunya virus. Genome sequence was partly determined, and phylogenetic studies were conducted

    Chikungunya Virus, Cameroon, 2006

    Get PDF
    We report the isolation of chikungunya virus from a patient during an outbreak of a denguelike syndrome in Cameroon in 2006. The virus was phylogenetically grouped in the Democratic Republic of the Congo cluster, indicating a continuous circulation of a genetically similar chikungunya virus population during 6 years in Central Africa

    Dengue Type 3 Virus, Saint Martin, 2003–2004

    Get PDF
    We describe the spread of a dengue virus during an outbreak in Saint Martin island (French West Indies) during winter 2003–2004. Dengue type 3 viruses were isolated from 6 patients exhibiting clinical symptoms. This serotype had not been detected on the island during the preceding 3 years. Genome sequence determinations and analyses showed a common origin with dengue type 3 viruses isolated in Martinique 2 years earlier

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS

    Antioxidants inhibit the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized LDL on human umbilical vein endothelial cells.

    No full text
    The oxidative modification of low density lipoprotein (LDL) and the endothelial expression of adhesion molecules are key events in the pathogenesis of atherosclerosis. In this study we evaluated the effect of oxidized LDL on the expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM- 1), and E-selectin on human umbilical vein endothelial cells (HUVECs). The hypothesis that oxidized LDL functions as a prooxidant signal was also evaluated, by studying the effect of different radical-scavenging antioxidants on expression of adhesion molecules. LDL was oxidized by using Cu-2+, HUVECs or phospholipase A-2 (PLA-2)/soybean lipoxygenase (SLO), the degree of oxidation being measured as thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (CD). Exposure of 200 mu-g/ml of native LDL to 1 mu Cu-2+ HUVECs and to PLA-2/ SLO resulted in four- to fivefold higher levels of TBARS and CD than in native LDL. Cu-2+- (1 mu-M), HUVEC-, and PLA-2/SLO-oxidized LDL caused a dose-dependent, significant increase of ICAM-1 and VCAM-1 (p lt .01). The expression of E-selectin did not change. LDL oxidized with a 2.5 and 5 mu-M Cu-2+ did not increase ICAM-1 and VCAM-1 significantly. Both the CU-2+- and HUVEC-oxidized LDL, subjected to dialysis and ultrafiltration, induced ICAM-1 and VCAM-1 expression. After incubation with the ultrafiltrate, the expression of ICAM-1 and VCAM-1 was not significantly different from that obtained with native LDL. LDL pretreated with different antioxidants (vitamin E and probucol) and subjected to oxidation by Cu-2+ and HUVECs induced a significantly lower expression of ICAM-1 and VCAM-1 than nonloaded LDL (p lt .01). The pretreatment of HUVECs with vitamin E and probucol significantly reduced the expression of VCAM-1 on HUVECs induced by oxidized LDL (p lt .01); the effect on ICAM-1 was much less evident. In conclusion, oxidized LDL can induce the expression of different adhesion molecules on HUVECs; this induction can be prevented by pretreating either the LDL or the cells with radical-scavenging antioxidant

    Oxidized low-density lipoprotein increases the production of intracellular reactive oxygen species in endothelial cells: inhibitory effect of lacidipine.

    No full text
    OBJECTIVE: The mechanisms by which oxidized low-density lipoprotein (ox-LDL) induces the expression of adhesion molecules on endothelial cells (HUVECs) are still not clear. The signal transduction pathways for these binding molecules include the translocation of the transcription factor NF-kB and the intracellular reactive oxygen species (ROS) are said to play a key role in this process. Aim of this study was (1) to evaluate the effect of ox-LDL on intracellular production of ROS in culture of HUVECs; (2) to evaluate if the intracellular increase of ROS induced by ox-LDL is mediated by the binding to a specific endothelial receptor; (3) to ascertain if lacidipine can decrease ox-LDL-induced ROS production in HUVECs. METHODS: Five microM Cu2+ ox-LDL were incubated with HUVECs for 5 min. 2',7'-Dichlorofluorescein (DCF) as an expression of intracellular ROS production, was measured by flow cytometry. RESULTS: ox-LDL induced a significant dose-dependent increase in DCF production (P < 0.001) through the binding to a specific receptor. The preincubation of HUVECs with radical scavengers compounds and lacidipine significantly reduced (P < 0.001) the ox-LDL-induced DCF production. CONCLUSIONS: ox-LDL increased the intracellular formation of ROS through the ligation to a specific endothelial receptor. Preincubation of HUVECs with lacidipine, a calcium antagonist with antioxidant properties, significantly reduced the intracellular ROS formation induced by ox-LDL. We propose that the effect of lacidipine on adhesion molecule expression and on NF-kB activation can be explained by its effect on intracellular ROS formation
    corecore