8,052 research outputs found

    Extended Skyrme Equation of State in asymmetric nuclear matter

    Get PDF
    We present a new equation of state for infinite systems (symmetric, asymmetric and neutron matter) based on an extended Skyrme functional constrained by microscopic Brueckner-Bethe-Goldstone results. The resulting equation of state reproduces with very good accuracy the main features of microscopic calculations and it is compatible with recent measurements of two times Solar-mass neutron stars. We provide all necessary analytical expressions to facilitate a quick numerical implementation of quantities of astrophysical interest

    Linear response in infinite nuclear matter as a tool to reveal finite size instabilities

    Full text link
    Nuclear effective interactions are often modelled by simple analytical expressions such as the Skyrme zero-range force. This effective interaction depends on a limited number of parameters that are usually fitted using experimental data obtained from doubly magic nuclei. It was recently shown that many Skyrme functionals lead to the appearance of instabilities, in particular when symmetries are broken, for example unphysical polarization of odd-even or rotating nuclei. In this article, we show how the formalism of the linear response in infinite nuclear matter can be used to predict and avoid the regions of parameters that are responsible for these unphysical instabilities.Comment: Based on talk presented at 18th Nuclear Physics Workshop "Maria and Pierre Curie", 2011, Kazimierz, Polan

    Nuclear response for the Skyrme effective interaction with zero-range tensor terms. II. Sum rules and instabilities

    Full text link
    The formalism of linear response theory for Skyrme forces including tensor terms presented in article [1] is generalized for the case of a Skyrme energy density functional in infinite matter. We also present analytical results for the odd-power sum rules, with particular attention to the inverse energy weighted sum rule, M−1M_{-1}, as a tool to detect instabilities in Skyrme functionals.Comment: Submitted to Phys. Rev.

    Spurious finite-size instabilities in nuclear energy density functionals: spin channel

    Get PDF
    It has been recently shown, that some Skyrme functionals can lead to non-converging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. We show that the finite-size instabilities not only affect the ground state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. We perform systematic fully-self consistent Random Phase Approximation (RPA) calculations in spherical doubly-magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term s⋅Δs\mathbf{s}\cdot \Delta \mathbf{s} . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because RPA the stability matrix becomes non-positive.By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. We find a quantitative stability criterion to detect finite-size instabilities related to the spin s⋅Δs\mathbf{s}\cdot \Delta \mathbf{s} term of a functional. This criterion could be easily implemented into the standard fitting protocols to fix the coupling constants of the Skyrme functional

    Fitting Skyrme functionals using linear response theory

    Full text link
    Recently, it has been recently shown that the linear response theory in symmetric nuclear matter can be used as a tool to detect finite size instabilities for different Skyrme functionals. In particular it has been shown that there is a correlation between the density at which instabilities occur in infinite matter and the instabilities in finite nuclei. In this article we present a new fitting protocol that uses this correlation to add new additional constraint in Symmetric Infinite Nuclear Matter in order to ensure the stability of finite nuclei against matter fluctuation in all spin and isospin channels. As an application, we give the parameters set for a new Skyrme functional which includes central and spin-orbit parts and which is free from instabilities by construction.Comment: Proceeding of 19th Nuclear Physics Workshop "Marie & Pierre Curie" Kazimierz 201

    Understanding fragility in supercooled Lennard-Jones mixtures. II. Potential energy surface

    Full text link
    We numerically investigated the connection between isobaric fragility and the properties of high-order stationary points of the potential energy surface in different supercooled Lennard-Jones mixtures. The increase of effective activation energies upon supercooling appears to be driven by the increase of average potential energy barriers measured by the energy dependence of the fraction of unstable modes. Such an increase is sharper, the more fragile is the mixture. Correlations between fragility and other properties of high-order stationary points, including the vibrational density of states and the localization features of unstable modes, are also discussed.Comment: 13 pages, 13 figures, minor revisions, one figure adde

    Pairing correlations of cold fermionic gases at overflow from a narrow to a wide harmonic trap

    Full text link
    Within the context of Hartree-Fock-Bogoliubov theory, we study the behavior of superfluid Fermi systems when they pass from a small to a large container. Such systems can be now realized thanks to recent progress in experimental techniques. It will allow to better understand pairing properties at overflow and in general in rapidly varying external potentials

    A Role for Late Meristem Identity2 in the Reproductive Development of Arabidopsis

    Get PDF
    The switch from producing vegetative structures--branches and leaves--to producing reproductive structures--flowers--is a crucial developmental transition that significantly affects the reproductive success of flowering plants. In Arabidopsis thaliana , this transition is in large part controlled by the meristem identity regulator LEAFY (LFY) and the LFY direct target APETALA1 (AP1 ). The molecular mechanisms by which LFY orchestrates a precise and robust switch to flower formation is not well understood. Here we show that the R2R3 MYB transcription factor and direct LFY target LATE MERISTEM IDENTITY2 ( LMI2 ) plays a role in the meristem identity transition. Like LFY, LMI2 directly activates AP1 ; moreover LMI2 and LFY physically interact. LFY, LMI2 and AP1 are connected in a feed-forward and positive feedback loop network. We propose that these intricate regulatory interactions direct not only the precision of this critical developmental transition, but also contribute to its robustness and irreversibility. Subsequent to the meristem identity transition floral primordia undergo a growth period prior to floral organogenesis. This growth phase is maintained in part by the flowering-time genes SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Eventually, these flowering-time genes are downregulated by AP1. This downregulation results in the termination of meristematic activity and the onset of floral differentiation. In the absence of AP1, ectopic expression of SVP, AGL24 and SOC1 prevents differentiation and leads to the development of floral meristems in the axils of the first whorl organs. These floral meristems give rise to branched flowers. Here we present a possible role for LMI2 during floral primordia growth. Similar to SVP, AGL24 and SOC1, AP1 downregulates LMI2 in young flower primordia thus preventing the development of branched flowers. LMI2 acts in the same pathway as SVP, AGL24 and SOC1 and the similar expression patterns of LMI2 and SVP as well as the direct binding of LMI2 to SVP suggests a link between LMI2 and the pathways that maintain primordia growth during early flower development

    Nuclear response for the Skyrme effective interaction with zero-range tensor terms. III. Neutron matter and neutrino propagation

    Full text link
    The formalism of the linear response for the Skyrme energy density functional including tensor terms derived in articles [1,2] for nuclear matter is applied here to the case of pure neutron matter. As in article [2] we present analytical results for the response function in all channels, the Landau parameters and the odd-power sum rules. Special emphasis is given to the inverse energy weighted sum rule because it can be used to detect non physical instabilities. Typical examples are discussed and numerical results shown. Moreover, as a direct application, neutrino propagation in neutron matter is investigated through its neutrino mean free path at zero temperature. This quantity turns out to be very sensitive to the tensor terms of the Skyrme energy density functional
    • 

    corecore