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ABSTRACT

We present a new equation of state for infinite systems (synmonasymmetric and neutron matter) based oredended Skyrme

functional constrained by microscopic Brueckner-BetlweStone results. The resulting equation of state represiugth very good
accuracy the main features of microscopic calculationdtasdompatible with recent measurements of two times Swlass neutron
stars. We provide all necessary analytical expressionaditithte a quick numerical implementation of quantitiésastrophysical
interest.
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=5 .1. Introduction

n

— A key ingredient for many astrophysical calculations islalde Equation of State (EoS) for isospin asymmetric mattevering
from symmetric nuclear matter (SNM) to pure neutron mativ], from low to high densities 4 — 5 times saturation density).
< .In this respect, a popular application is by instance therg@ton of neutron stars (NS) properties as the mass-sadilation or
— ‘their inhomogeneous crust. Restricting ourselves to tkegoeay of nucleonic EoS, one of the most popular EoS is thedenieed
<I 'by [Baldo et al.[(1997). It has been obtained within the carntéBrueckner-Bethe-Goldstone (BBG) many-body theorypgshe
<" Argonne v14 potential plus the Urbana model for the thredyhmuclear interaction. Such an EoS has been tabulated\fen gi
[>~ values of the density of the system. For such a reason, itstomary to fit the EoS with some analytical expressions whieh
LO) ‘much simple to handle in numerical codes (Typel &t al. (2pd3}ed for astrophysical simulations.
O _ A possible alternative to the fit is the use of afeetive Skyrme interaction (Skyrine (1959)) as early suggeby Cao et al.
(2006). These authors have shown that it is possible to fiffentere Skyrme functional (that they named LNS) on BBG, covisg
@ some of the main features of the original BBG E0S. The mairaathge of using a functional instead of a generic interpmiat
o as done for instance by Haensel & Potekhin (2004), is tha¢ ¢ine parameters of the functional are fixed, all basic ptmseas
LO pression or symmetry energy can be simply obtained by stdrdkxivative operations. In the case where the vector gatteo
H functional is also taken into account, as for the case of ational derived from a complete Skyrme interaction, withrapde
> formalism based on the Linear Response theory Pastore (045), one can also describe collective phenomena wiklgiNiS.
>< The latter play a crucial role in describingf@irent phenomena in the NS as the thermal properties of tlee anast/(Chamel et al.
(2013)) or the neutrino mean free path Iwamoto & Pethick g)98nother important advantage is that the same functicaraklso
CU be consistently used to describe the region of the crusedfih (Chamel & Haensel (2008)), thus allowing for a unifieccdetion
of the star. Although LNS gives a nice reproduction on infimitatter properties up to two times saturation density, S B pure
neutron matter (PNM) remarkably deviates from the BBG itsslgading to a dierent behavior of the symmetry energy at high
density. It follows that the LNS EoS supports only NS with siesver than 1.6 Solar-masses as shown by Singh et al.|(Z048).
authors of[(Gambacurta etlal. (2011)) have recently refitied.NS functional, but hte new LNS1 and LNS5 do not subsadipti
improve the properties of the homogeneous nuclear mediworapared to the original LNS, although they improve the dpgon
of finite nuclei. In the present article, we generalize thelgsis done bmlalﬁ%) concerning the possibifigoastraining
a phenomenological Skyrme functional on microscopic tesbl using arextended Skyrme functional which includes up to 6th
order derivative terms (Carlsson et al. (2008); Raimonellg2011)), aiming at giving a reliable EoS also in the highsity region
and thus in better agreement with BBG results.
Indeed, the Skyrme interaction can be interpreted as a lomemtum expansion of a finite-range interaction (Skyfm&@)p
The standard form of the interaction is the one given hy_Vautherin & Bfitl072) and it takes into account only gradients terms
up to the second power, as for LNS. Although this can be viesmged good approximation to be used in finite nuclei calculatio
(Bender et al.[(2003)), it is not adapted to the study of denst¢ear matter. For example, te@ndard Skyrme interaction is not
able to reproduce at the same time the correct isovectdtisglof the dfective mass of BBG results (Baldo el al. (2014b)) and
the high density behavior of nuclear matter. Among théedént strategies one can adopt to overcome theBeuties, the most
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promising implies either the addition of extra density degencies on the velocity dependent terms (Chamel & Gorzi0))
or the inclusion of higher order derivative terms (Carlssbal. (2008)). We prefer to follow the latter approach siit@lows to
rasp the correct behavior of the EoS of BBG calculationg@sfly at high density. In particular, it has been shownv@&me et dl.
)) that the dferent terms follow a precise hierarchy and thus high ordengehave stronger influence on the high density
part, inducing almost negligible modification to the low diypart. Such a result is also in good agreement with pus/imdings
of ki_(2010), based on Density Matripdhsion methods in finite nuclei. To this respect, the fumeti
presented here can be considered as the natural extengtos ldXS one to correct the high density region. In the preaditle,
we thus present aextended Skyrme functional, hereafter called LYVAL, for a properatmment of these higher order gradients,
giving all necessary analytical expressions for astrojglaysalculations. A numerical code and the tabulated \sahfethis new
EoS will be available at the CompOSE webhge
The article is organized as follows. In SEE. 2 we present émegal formalism of the extended Skyrme functional. In Beee
give the general formula for the binding energy per partictdsospin asymmetric nuclear matter, while in 9éc. 4 wes@néthe
case of polarized matter. In S&€¢. 5, we study the behavidreo§ymmetry energy. In SEE.6 we further discuss the behaf/ibe
effective mass and in Sdd. 7 we examine the applications of odehto the description of a NS. Our conclusions are then given

Sed.3.

2. Extended Skyrme interaction

The most general form of the Skyrme functional up to 6th oidethe gradient expansion has been derived by Carlsson et al.
(2008). In the present article, we prefer to relate this fiomal to an &ective interaction, thus reducing the number of free caowpli
constants, as shown in (Davesne étlal. (2013)). The comespp Skyrme interaction reads (Raimondi etlal. (2011);d3ae et &l.
(2014b))

Voo = (14 XOP) 4 2t (L x2P,) (K24 k2] + 12 (14 PP )K -k + 20 (14 40P, ) (R)
+ %t(l“) (14 3Py [(K? + K22 + 4k - K)?] + £ (14 E7P, ) (K - K)(k 2 + K?)

+ %t(f) (1+x7Ps) (K2 + k) [(K? + k22 + 126 - K)?| + ) (14X P, ) (K - k) [3(? + k?)? + 4k k)] . (1)

The notations used here are standard and more details caortin (Bender et al. (2003)). The spin-orbit and tensonssare
here discarded since they do not contribute to the total Et&ugh they do contribute to its multipolar partial waeedmposition,
as shown by Davesne et al. (2014a). The corresponding éunradtiorm can be obtained by performing an average on HaRoe&
states. Results for an homogeneous medium are given il Jedr(mportant advantage of deriving a functional from diieetive
interaction is that when applied to a single nucleon the tional leads to vanishing internal energy. This is not awttboally
guarantee for a generlc phenomenological functional tihyiing that the nucleon can interacting with itself (Ch4¢2€10)).

The paramete . (n=0, 2,4, 6) of this dfective interaction have been fitted, following the methadirated by Davesne
et al. ), to some results of a BBG calculation (Baldol2(1897); Baldo [(2014)), based on the microscopic Argowhé

nucleon-nucleon two-body interaction plus the Urbana rhéatethe three -body term. Although more recent BBG caldaolat
for the EoS are available (as for mstalmmwme)complete determination of the arameters requiresthésST -
decomposition of the potential energy. To the best of ountedge, the BBG results \[. (1997)) are the mostete,
also including results for other important astrophysiagmtities. There exist otheb |n|t|0 results obtamed from chiraftective
field calculations aWjow_« (Hebeler et dl.[(2011)) or the many-body perturbaﬂj&%ﬂ&jl.&@ﬂ%ﬂm&),
which could also be used to fix extended Skyrme parametehnsavgimilar qualityl(Davesn al. (2015)). However, thesspntly
cover a narrower density range than BBG results, and areftiternot yet suited for our present purpose. We thus relheBBG
results of (Baldo et all (1997)). The inputs for the fit in@utie projection of the energy per particle in thé&etient spin §) and
isospin (') channels in symmetric nuclear matter (SNM), and the EoStf BNM and pure neutron matter (PNM). As discussed
bylDavesne et al. (2015), no density-dependenttermtgt)e(go), a parameters) is required to get satisfactory fits, but theltiag
parameterizations give too low a value for the Land@ieative mass of SNM at saturatiom{(/m =~ 0.4). In this paper, the density-
dependent term is thus taken into account, and we have figgghiameters to the values= 1/6, tgo) = 13763 [MeV fm?*?],

and xgo) = 0.3. In such a way, we can properly constrain the higher ordevat&/e terms whose role is mainly to give the correct
asymptotic behavior at high density.

To fix the remaining parameters we have proceeded in two.dtepdirst step, we considered the interactidn (1) up to 4deor
in the gradient expansion only. The paramet&tsx™, (n = 0, 2, 4) have been determined by fitting BBG results for SNM EoS and
(S, T) channels. However, since the resulting EoS for PNM is tpailsve at high densities, we have added 6th order parameter
on top of the previously determined 4th order values. To kbemuality of the SNM EoS we have imposed the valt@s_ 0,

(6) =0, andx(s) = —5/4. The remaining 6th order paramet@ is then determined by fitting the PNM EoS in the full density
mterval The resultmg parameters of the LYVAL interantare given in TablE]1.
In Figure[d, are displayed the EoS for SNM and PNM (panel aj,the SNM potential energy decomposition in th&etient
spin-isospin §, T) channels (panel b). Our fit is clearly very good for both EdlSe results obtained using LNS are also displayed

1 httpy/compose.obspm/fr
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Table 1. Parameters of the extended LYVA1 Skyrme interaction, with 1/6, t = 13763 [MeVin#**], andx{” = 0

{0 Mevim®] {2 [Mevim®] (P [Mevim®] () [Mevim?] £ [Mevim?]  t© [Mevim?]  ®) [Mevfm?]

-2518.240 207.300 527.930 -23.691 -68.263 0 0.690
0 2 2 4 4 6 6
X X X X X X X
0.2537 -0.1688 -1.0131 0.5650 -1.2022 0 -1.2500
30

250

200"

E/A [MeV]
=
3

PR 1 . PR I TR I
0O 02 04 06 080 02 04 06 08 1
n [fm'aj

Fig. 1. (Colors online) Equations of state of SNM and PNM (panel &) jgmojections §, T) in SNM (panel b), both expressed in MeV. The solid
lines represent the result obtained with our extended S&ymeraction, while the dots represents the EoS obtaindgialdo et al.[(1997). The
LNS results are represented by dashed-lines.

(dashed lines), and one can see a rapid deviation of the PNS/ €arting fronm ~ 0.4 fm~3; one can expect this deviation also
manifests for other quantities as the symmetry energy dt tédues of the density. Let us now turn to the results for 8\ |-
channels shown in panel b. As already discussed in (Lesaistti (2006)), a general drawback of ttandard Skyrme functional

is that the simultaneous reproduction of teT)-channels is very dicult, to say the least. In the figure one can see the particular
LNS case, which fails to reproduce BBG results. In contnagh the extended functional th® = 1 channels are nicely fitted in
the full range of density values, whereas Bie= 0 channels show a deviation far> 0.6 fm=2 as a consequence of our giving
more weigh to PNM data in the fit. All the other quantities pregd hereafter in the article have not been fitted, and taeybe
considered as a prediction of our model.

Itis worth mentioning that there are some other functiomdiieh have been developed with particular attention to toperties
of NS. Among the non-relativistic ones, we consider the BCf@dldo et al. (2013, 20144&); Sharma el al. (2015)) and the BSk
family (Goriely et al. (2009, 2013)). The BCPM functionalshiaeen derived in a complete Khon-Sham scheme, thus nogdelat
to any interaction, and it has been explicitly constraireeteproduce BBG results in homogeneous matter. The BSk mbdek
been derived from anfiective Skyrme interaction with the addition of a power of tlemsity into the momentum dependent terms
of the standard Skyrme interaction. The BSk model have beast@ined on several nuclear observables as masses ainaf rad
finite nuclei together with additional pseudo-observaloesomogeneous nuclear matter. In Elg.2, we compare the Ed®th
SNM and PNM obtained with LYVA1, the BCPM functional and tanepresentative BSk interactions, namely BSk19, BSk20 and
BSk21 (Chamel et al. (2011)). Since the BCPM functional fitsssame microscopic EoS as LYVAL, we observe that the resdts
almost on top of each other, except in the saturation regimerevthe BCPM has been adjusted to give a value of saturagiositgt
no = 0.16fm™3 andE/A = —16 MeV. We remind that the BCMP has been fitted umte 0.6 fm~3 and that beyond that value
the microscopic results of Burgio & Schulze (2010) have hesad. In order to be consistent, we will thus omit the poieigamd
0.6 fm=2 in this paper.

Concerning the BSk functionals, we used the generalizedbszgjpns given in (Lesinski etlal. (2007)) to obtain tigsirdecom-
position. It is important to notice that as for the SLy4 cagh@banat et al. (1997)), the coupling constants in fronhefso-called
J? term are switched to zero. This choice is justified in_( Cha&&loriely (2010)) to avoid the appearance of spurious femgm
netic phase-transitions in the homogeneous medium (Mavauet al. (2002)) and anomalous behavior of the entropy.idi3F
we compare the results obtained with the BSk models and th@ &fculations. We observe that the BSk behave better than an
standard Skyrme interactions (Lesinski €tlal. (2007))esinehe low-density regiony{ ng) the BSk give the correct sign and trend
of the energy per particle. On the same figure we also repechiral éfective field theory ¢-EFT) calculations at low momentum
k (Hebeler et dl.(2011)). Tha{EFT) results are in very good agreement with the BBG resydtst from the (S1,T=1) channel.
Such a comparison gives us the level of uncertainty relatédet adopted interaction afod calculation technique.
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Fig. 2. (Colors online) Equations of state of SNM (panel a) and PNEh@gb b) obtained using the LYVAL interaction (solid) the B@kdels
(dashed) and the BCMP functional (dotted).
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Fig. 3. (Colors online) Same as Hig.1, but for the BSk model disaligséhe text.

3. Energy per particle

In this section we give the analytical expression of the inig@nergy per particle5/A) for infinite systems with isospin unbalance,
here called Asymmetric Nuclear Matter (ANM). Other relevgunantities can be easily derived from it, including SNM &idM.
It is convenient to define an isospin asymmetry parameter as

My — Np

Y= =1-2Y,, (@)

wherenyp) is the neutron (proton) density,= n, + N, is the total density of the system aivg is the proton fraction. When the
asymmetry parameter is equalYo= 0 we are in the SNM case, while faf = 1 we are in the other extreme case, PNM. To

. . . _ 1/3 1/3
present the expressions in a compact, yet transparent,vierteefine the cdécientsa = (37r2/2) / andb = (37r2) ! , and the
following functions of the asymmetry parameter

Fe = S[A+Y)+ (1Y), ©)

NI NI

Gy = A+ -@1-Y)]. (4)

The EoS in ANM reads

3 n? 1 1
_ (0) 21 +(0) T [a_ 2 a+1
E/A = 55 —a’Fs;3n?/3 [ - (2% + )Y ]to n+ 28 [3 (2x3 + 1)Y ]tgn

?[C¥Fs3 + CPYGeya| 0P + |8 (5F7s + TF2 5) + CY (5YGy3 + 7G0)) | 02

302 T 1120°
1
+— 240 [C(e) (5F3 + 27F7/3F5/3) + C ©) (SYGS + 27G7/3G5/3)] (5)
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The constant@fiéi‘lﬁ) are the following combinations of Skyrme parameters

cl” = 3+ 6+, (6)
(n) () (n) (n) (n)
Cl7 = -7+ + (27 + 1)t (7
E/A [MeV]
1 200
0.8 | NN I 150
\\\\\ \\:\:\\\
0.6 OO [ 1 100
> LR UERRRRR
PRRRRRRRRRRRRAR
Do | sg
-4 0
(il - -50
08

Fig. 4. (Colors online) Equations of states in asymmetric nucleatten as a function of the densityand asymmetry parametgr

In Fig.[4, we show the binding energy per particle obtainethwiur new functional as a function of the density and the
asymmetry parameteéf of the system. As expected, the energy minimum is locat&tl-at0 with the value€/A =-17.02 [MeV]
andng = 0.169 [fm3]. These values are slightly larger than commonly adoptess §Butra et a1/ (2012)). This is a drawback of
the BBG calculations used to fix the parameters which lig\e=-16.46 [MeV] andny = 0.178 [fm~®] (Baldo et al. (1997)). We
decided not to adjust the saturation point to the standde\as extracted, for example, from mass formulas (Bohr &t®lson
(1998)) and keep the value obtained by the direct fit as da@%l%@). Due to uncertainties related tee¢hpody
forces 9)) and the methods adopted for the ctionls I 2)), these values can change framalimitio
method to another. The goal of the present article is to pittaea simple Skyrme functional can grasp the main featurasore
complicated calculation based on realistic nucleon-rarcieteraction, as a consequence we prefer not to do any fiirggtaround
the saturation point since it will not change the main cosiclns of the present work.

From Eq[5, we can also extract other quantities, as the ymeess the systeni = nz% or the nuclear incompressibility

— gn2 PEA _gaP ; .
K =09n WL:% =95 —E functions of the asymmetry parameteitn Tabl2, we report several relevant SNM quantities

calculated at saturation density. Our parametrizatioegyav value of the incompressibility & = 231 MeV at saturation density,
which is within the range of acceptable values as discusge®btra et al.((2012). The third derivative of the EoS giveghss
skewnes®).

Table 2. Basic SNM properties calculated with the LYVAL parametiia given in Tali.lL, the BCPM and the BSk19-21 functionalsadtiration
densityn.

| LYVA1T BCPM BSk19 BSk20 BSk21 LNS

no[fm=] | 0.169 0.160 0.160 0.160 0.158 0.175
E/AMeV] | -17.02 -16.00 -16.08 -16.80 -16.05 -15.31
K[MeV] 231 214 237 241 246 211
m/m 0.707 1 080 0.80 0.80 0.825
Q[MeV] 463  -881  -298  -282 274  -384
JMeV] 338 319 300 300 300 334
L[MeV] 645 530 319 374 466 615
KemMeV] | -75.6  -98.1 -191.4 -1365 -37.2 -127.7
QqmMeV] | 464 877 473 550 710 303
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The two limiting cases of symmetric nuclear matter and petgnon matter can be immediately obtained from[Eg. 5.

31 3 1 3 9 2
E/A = Eom —a’n®?+ étéo)n + 1—6t3n‘”1 + %azc(z)ns/ 3, Z—&)a“cgl)n” 5 1—5a6C§)6)n3 , (8)
SNM
31 1
EN. = Eom —b?n2® + = (1 X0 tOn, + 71— xa)tany
3 2 (2) 2) 5 3 9 4[~(4) @] A7/3 2 6 [ ~(6) ©)] 13
Sob[ +CP + 500 |8+ cP]nf +7gh [c® +cOnd. 9)

In Fig.[3, we show the evolution of the press#as a function of the density in SNM for LYVA1, BSk19-21 and B@PThe
two areas represent the constraints obtained on the EpSitiglBaicz et al.[(2002) using experlmental observationsezvy-ion
collisions and by Fuch$ (2006) of experiments on kaons. Véewie that the LYVAL functional is perfectly consistentiwatuch
results.

— WAl T T ]
" Bhe =1
100__ Bsk20
- BSKk21
— LNS

P [MeVim ]

=
o
T

3
n/nO

Fig. 5. (Colors online) The Pressure as a function of the densityNiM$or the different models considered in the article. See text for details

In Fig[d, we compare the resulting EoS in PNM for the LYVA1 @tional and the results of several mlcroscoplc calculation
.(1998); Li & Schulze (2008); Baldo et al. (199@gandolfi et al.|(2012)). We observe that our EoS is compatitith
these calculations up to three times the saturation dermyond that value the fierent calculations strongly fiiér from each
other. It is thus very important to adopt the same microscoalculation to constrain both the PNM ans SNM EoS, otherydse
would obtain non trustable results concerning the behafitre symmetry energy.

30 — LYVAl | DL DL DL DL DL |

= Akmal etal.
250[ » Li etal. (V18)

Li et al. (BOB)
2001 © BBG

MeV]

l—1150'

E/N

100

50F e .

TS A T 1o
0O 01 02 03 0405 06 07 08 09 1
n[fm'3]

Fig. 6. (Colors online) The EoS in PNM for theftierent models discussed in the text. The shaded area refgréisertonstraints extracted from

(Gandolfi et al.[(2012)).

In Fig[4, we show the pressukein PNM for the diferent models discussed here and some additional constririved in
(DanielewicZ (2003)) and based on the analysis of heavyatiisions. We observe that both the BCPM and LYVAL modelsiare
good agreement with the constraints extracted assuminfj Bs8. Seel(Danielewicz (2003)) for more details.
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— LYVA1l

P [MeVfm

Fig. 7. (Colors online) The pressure as a function of the densityNivIFor the different models considered in the article. The grey areas are

derived from the analysis df (Danielewi¢z (2D03)).

The sound velocitys of a system is obtained in the non-relativistic limit frone tisothermal incompressibilitgn/dP. We refer
to (Haensel et all (2007)) for a more detailed discussioe.&xplicit expression for PNM reads

CZ(VS)Z _2n
mel\T) T 3om

1 1
P + 21— X + (L XD+ )2+

1 1 8
+262[C0 + P+ 20 O+ 0] %+ 20 [+ O

(10)

In Fig[d, we show the evolution ofs in PNM as a function of the density. We observe that our patara¢ion respects the
causality principle (there is actually a maximum aroundfin1® with vs/c = 0.97), and is thus reliable for the description of high
density neutron matter. On the same figure we also comparesiits obtained with the BSk models. We notice that the BSk2
model violates causality in PNM at ~ 0.8 fm=3. As discussed in_(Goriely etlal. (2010)), the BSk models r@sthe causality
principle ins-equilibrium nuclear matter for the density ranges founbl &

From this analysis we exclude the BCPM model since its aitaly¢xpressions are strictly valid, by construction, oinlyhe

low density regime.

We notice that although the causality principle is alwaypeeted by the LYVA1 functional a speed of sound very clogbéo
speed of light is clearly a symptom of the use of the non-iresaic approximation to treat matter very close to the tiglsitic limit.

1.5

=

o BBG
— LYVAl
-- BSk19
-- BSk20
-- BSk21
- LNS

Fig. 8. (Colors online) The speed of sound in PNM as a function of #esity of the system. The notation is as in [Hig. 1.

4. Polarized Matter

A major drawback of severaffective interactions is the presence of a spontaneous fagoetic transition| (Vidaurre etlal. (1984))
at densities relevant for the physics of nuclei and or NS. &l@x, such a spontaneous phase transition has not beewedbser
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far by any microscopic calculation (Pandharipande et 872); Fantoni et al! (2001); Vidana et al. (2002)). It is timteresting to

determine the behavior of our interaction concerning thjseat.
The expressions for the energy per particle in fully polkdipure neutron matter (PolPNM) reads

3 n? 3 9 16
E/A = S 2P+ =R+ NP ¢ A1+ XE)nTB 4 =B+ XOOn® 11
Ao Zm 7¢ A+ 3¢ (150G 7 L+ (11)

where we have used the notatior= (67%)3. In the following we compare the results obtained with thevAY functional and
available BBG calculations of (Bombaci etl al. (2006)). Marecisely, we show in Figl9, the fiirence of energy per particle
between PolPNM and PNM, that &£ /A = E/A|P0IPNM - E/A|F,N obtained with the LYVAL1 functional and the BBG results
of (Baombaci et al.[(2006)). In order to be consistent, we i i , for this particular case, the results up®ng since the
treatment of the three-body term at high density is not tmeesased in BBG results of (Baldo et dl. (1997)) and used here fo
the fit of the LYVAL functional. We observe that the LYVAL as lwas BSk20 follow pretty closely the BBG results, while the
BSk19(21) tends to underestimate (overestimate) the gnkffigrence between the two systems. The LNS functional is nblesta
against polarization and at densities- 0.6 [fm~3] favors the appearance of polarized neutron matter. TheNB&mRctional has
not been included in such analysis since the functional babeen tailored to describe polarized systems.

15 T T T T

o BBG

— LYVA1 .

-~ BSk19 A
';'100__ LNS //// 5
3]
=
<
Ll
< 50

%

Fig. 9. (Colors online) Energy dierence between PolPNM and PNM for th&elient models considered in the text.

5. Symmetry energies

We give now the LYVAL expression for the isospin symmetryrgger(n), which plays a crucial role in determining the composi-
tion of the NS since thg-equilibrium condition strongly depends on it. It followsatt reproducing the symmetry energy not only
at saturation, but also as a function of the density is a sacgsondition to have a reliable extrapolation of the highgity part

of the NS. Starting from the complete expression oflEq. 5, areexpand the binding energy per particle up to second ondbei
following way

E E
() = 2(0.0)+er(MY .. (12)
to get the result
& 1 1,1 1 ,[4 8 1 _o[48
er(n) = g+ éc‘l")n + 742 {écff) + cf)} e+ at {écg‘) + écg“)} ey e {gcge) + 16C(16)} ne. (13)

In Fig.[I0, we show the evolution of the symmetry enesg\as a function of the density of the system. At saturation igns
we obtain a value of the symmetry enetgyng) = J = 33.8 MeV, a value compatible with most recent constraints) abtained
combining diferent experimental dat&tlmoog)). Furthermar®bserve an excellent agreement up to several times the
saturation density value between our results and the BBG.dn¢he same figure, we also compare the evolution of the stngm
energy for the BCPM and BSk models. We observe that while B@RMés by construction results which are essentially on fop o
ours for low density, the BSk give veryftirent behaviors especially beyond saturation densitytelTisenot agreement between
different microscopic approaches concerning the behavier beyond saturation density. We refer to the discussion inr{eBo
et al. (201D)). A possible way to figure out the correct trefid-oat high density is the predicted proton fraction and thus the
possibility or not of allowing firect URCA process (Haen<e995)). We refer to Sdd.7 for a more detailed discussion. &ive ¢
anyhow anticipate that BSk19-20 and LNS are not compatiiitesuch additional constraints. In panel (b), we compagea ésults
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at low density obtained with the fiierent models and the constraints obtainedlin ( Danielewitzé (2014)). The large yellow
area represents the constraints extracted by analyziagdasobaric analog states (IAS), while the smaller areianitated by the
solid line contour has been obtained by studying data on ¢luéron skin properties of some selected nuclei. All the fiomals
considered in the text respect these constraints.

16

50 T T T T T T T T T T
40F
120
S S 30-
<] [¢]
2 80 =3
wl— wl—zo_
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10 _
[1 Neutron skin
O 1 1 1 1 1 \I\ 1 1 1 O 1 1 1 1 1 1 1 1 1 1
0O 01 02 03 0405 06 07 08 09 1 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
n[fm™] n[fm™]

Fig. 10. (Colors online) Symmetry energy as a function of the dertitthe system for dferent models (left panel). The dots correpond to the
BBG calculations. In the right panel we compare the constisaixtracted using IAS_Danielewicz & llee (2014). See textigails.

It is important to remind that a parabolic approximation wiaed in |(Baldo et all (1997)) to extract the symmetry energy a
the validity of such an approximation has been tested ontizérregionn € [0, 0.4] fm—3 (Bombaci & Lombardol(1991); Goriely
et al. (2010)). In this case the symmetry energy is obtaisdti@diference between the EoS in PNM and SNM

E E
@_ = _ =
e = 20 - () (14)

In Fig[I1, we compare the results for the LYVAL functionahgsthe definition of EQ.1I3 and Eqg.l4. We observe that usieg th
parabolic approximation we have a better reproduction efrigh density part of the BBG results of (Baldo et al. (199T)je
agreement is still not perfect due to the small overestimfathe EoS for PNM resulting in our fit and shown in Fig.1. Weiocet
that in our calculations the two definitions of the symmetngrgy of EJ.IB and Hg.14 are essentially on top of each othéo u
n~ 0.6 [fm~3].

PNM

16

(2)I'I'I'I'I'I'I'I

120

80

& [MeV]

40

PR | N | - 1 PR | N | - 1 PR | N | - 1 N
0O 01 02 03 0405 06 07 08 09 1
n [fm'3]

Fig. 11. (Colors online) Symmetry energy as a function of the densfitthe system using ffierent definition of the symmetry energy. The dots
represent the BBG results. See text for details.

For completeness, we also define additional quantitietectta the symmetry energy, &s= 3nﬁgaT—r$”), Keym = 9n2%, and

Qsym = 27n3%. Their values at saturation density are reported in[Tlabh2.cbnstraints on these quantities are much less strict,
leading to larger error bars (Dutra ef al. (2012)). Howetrar value obtained here by instance fids compatible with some recent
estimatedﬁ@al@lo» extracted from finite nualelysis.

6. Effective mass

The dfective mass is directly related to some important processesutrino emissivity (Yakovlev etlal. (2001)). We thusegive
explicit expressions for the neutrom{) and proton |(rT;J) Landau &ective masses at the Fermi surface as a function of the glensit
and of the asymmetry of the system. For neutrons it reads
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N 1 1
_ (2 (2) 2 (4) 4) 4) (4) 5/3
ﬁ - R = 1_6 (CO + Cl Y) n+ 1—6& [(CO + Cl Y) (F2/3 + Gz/g) + CO F5/3 + Cl G5/3] n / 5
1 42
+ 1—68.4 3(C(()6) + C(le)Y)(F4/3 + G4/3) + E(C(()G)Fag + C(16)G5/3)(F2/3 + Gg/g) + 3(C§)6)F7/3 + C(lG)G7/3) n7/3 . (15)

The proton &ective mass is simply obtained by replaciig» —Y in the previous expression. It is worth noticing that contita
the standard Skyrme interaction, thiéeetive mass for our pseudo-potential has an explicit degrecelon the momentuk as it
happens in the case of real BBG calculations.[See Becker @0dl4) for more details.

In Fig.[I2, we show the evolution of thefective mass for neutrons and protons as a function of the mgym parameter
at saturation density. We observe that the mass spliftimg= mj, — mj, has the correct sign and density behavior as compared
to BBG results/(Baldo et all (2014b)), although the resgléffective masses are slightly lower at saturation in the SNM: cas
(m*/m =~ 0.7) compared to the BBG resulin{/m =~ 0.8). Such a dierence can't be further reduced by a better fine-tuning of the

tgo), xgo) parameters without inducing sid&ects on other quantities.

1.2 i T i T i T i T
n=0.169 fm° — Neutrons
1L — Protons
o o o ©°o 0O f
og a 8 8 g o o u] =] o &
0.6+ -
0.4+ -
0 )| M 1 M 1 M 1 M 1 M
“0 0.2 0.4 0.6 0.8 1

Y

Fig. 12. (Colors online) Neutron and protoiffective mass at saturation density as a function of the asymmparametely. The dots correspond
to the BBG calculations (Baldo etldl. (2014b)), the solielta LYVAL interaction.

In Fig.[13 (a), we compare théfective mass in SNM calculated with the LYVA1 functional ahd torresponding BBG results
as a function of the density of the system. Although thedénce between the two calculations increases with thetgeaaching
at most 30% in the high density region, the asymptotic befrasicorrect with a positive slope at high densities. On #raesfigure
we also show the results obtained with th&etient BSk models (concerning BCPM, it has been fitted imgptia bare nucleon
mass at all densities and all asymmetries). The majdergince between the BSk and LYVA models is related to the hégtsity
behavior, where the former lead to a much smalfzaive mass compared to BBG results. In Eid. 13 (b), we shevetolution of
the diference between neutron and protdiieetive masam = ny,/m—mji;/matng = 0.169 fnr 3 for the diferent models discussed
in the present article. We notice that the BSk19-20 mode&ksgimuch larger splitting than the one observed with BBGutatons.

1’7
4 T T T T T T T T T T T T T T T

Fig. 13. (Colors online) On the panel a, we show the neutrfiaative mass in SNM (¥0) for the BBG calculations (dots), LYVAL (solid) and
BSk19-21 (dashed). On the panel b the evolution of tfectve mass splitting aty = 0.169 fnrs .

The presence of magnetic fields inside a star could lead tewsghalanced systems. As discussed in[$ec.4, such a catifogur
does not constitute the ground state of the system up toaleivees the saturation density, but the presence of anredtéeld could
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change the situation. Limiting ourselves to the case ofrjxad pure neutron matter, it is possible to write the exjpégpression
for the spin-up {) and spin-down () effective mass as

B }(C(2)+C(2)A)n (16)
2m 2m 8\ 72 3
1 1
+ éc,g”nké(l + AR 4 éc:g“)nkéA(l + )3

+ %ch‘)nké[(l + AP+ (1- A+ 1—16cg4>nk§ [(1+A)%° - (1-A)°7

3 3
+ 2COnkE(1+A)Y3 + écgﬁ)nkﬁA(l + A3

8
21 21

+ H)Cg‘”nk‘;(l + AP+ AP+ (1- A7 + Ecg@nk‘é(l + AP + AR - (1- A
3

+ —COnKEL+ AP+ (1-N)) + %cge)nké [(1+A)R = (@1-A)

16

where we have definetl = (o — p;)/p. The coupling constan®)’, C{” are related to th&”, X" as follows

clV = @XM 431+ X (17)
cl = @M ¢ @+ XD (18)

The explicit expressions for the spin-dowffieetive mass can be derived from[Ed.16 by replading —A. In Fig.[14, we show the
evolution of the spin up (down)kective mass for the LYVA1 model and the original BBG resuBsifibaci et al.[(2006))

1-2'I'I'I'I'I'I'I'I'I

o Oo
R T LT
-xE = 1

0.6 =
o Spinup

0.4 o Spin down|

0.2t

A . P R TR NP RPN P B
-1 -08 -06 -04 -02 0 02 04 06 08 1
A

Fig. 14. (Colors online) Spin up and spin down neutrdfeetive mass at saturation density as a function of the aitioin parametet. The dots
correspond to the BBG calculations (Bombaci etlal. (20a6p solid line to LYVA1 interaction.

In Fig[13, we compare thefective mass for the spin up (down) component for thEedént functionals considered in the present
article in polarized neutron matter. The BCPM results argpnesent here : this functional can not be used for polar&gstems
since the informations on the vector part are missing by tcoason. Contrary to the LYVAL functional, the BSk models dot
produce any splitting in theffective mass : this is due to the absence of teBhs- T (see Egs. A1-A2 df Pastore ef al. (2014)) in
the functional which governs such a splitting. THEeetive mass given by BSk19 is particularly high comparedB&Besults. We

refer to (Goriely et dl. (2010)) for a more detailed discassi

7. Neutron Stars

In this section, we present the basic properties of a noreting NS at zero temperature using our interaction. Toutale the
mass and the radius of a NS we have to solve the Tolman-Opjmeah¥olkoff (TOV) equations for the total pressuPeand the
enclosed mass

dP(r) _ Gm(r)e(r) [(1 . P(r)a(r)) (1 . 47rr3P(r))] [1 B ZGm(r)]l ’

dr r2 c? g(r)c2 rc?
d'ggr) = 4rr2s(r) (19)
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Fig. 15. (Colors online) Same as [Eigl2, but for other models consitiar the text. Up (down) triangle stands for spin up (dowmjponent.

whereG is the gravitational constant aa(t) is the total energy density of the system. Since in our magetonsider only neutrons,
protons and electrons, tgeequilibrium condition at each value of the density of tha stanslates into the equatipp+un = e for
the chemical potentials, the possible contribution of nauleeing neglected. In Fif.IL6, we show the proton fractioiathe star
calculated using our EoS. According to (Haehisel (1995% dinect URCA process, which is very important to have a fasting
during stellar evolution (Lattimer et @l. (1991)), can takace when the proton fraction is~ 0.11. We observe that our model
predicts the possibility for direct URCA process at alre8dimes saturation density. On the same plot, we also préiserBBG
results. The agreement between the two calculations isg@oyg up ton ~ 0.6 fm=3.

As anticipated in Sddl5, the possibility of allowing or notlisect URCA process can be used to make some consideration
concerning the behavior of the symmetry energy in the higisite region. Thes-equilibrium condition for nucleonic equation of
state can be related directly, within the parabolic appmation, to the symmetry energy, we have

e = tin — ptp ~ der(N)(L - 2Yp) (20)

whereuenp, are the chemical potential of thefidirent species included in the EoS. From[Ei}.16, we can cdachat only the
LYVA1, BSk21 and BCPM functionals allow for a direct URCA mess in NS.

0.2— T T T T 7 T T T [0)
/
// ©
0.15-
>_°— 0_1: _________________________
T - BCPM
0.05 “~.. -~ BSk19
S~ -- BSk20
S~ -- BSk21
. . . . . ~~-] = LNS
0.2 0.4 0.6 0.8 1
n[fm'a]

Fig. 16. (Colors online) Proton fractiol, as a function of the density of the star. The dashed line sepits the proton fraction treshold to activate
the direct URCA process during the cooling stage of the N®.dpen dots represent the BBG calculations.

To describe the structure of the NS we need to solve[Eq. (19psing thes-equilibrium for each value of the density. In the
most external layers, the crust, it is possible to obsery@thsence of structures, either nuclei or more exmtta-phases (Chamel
& Haensel|(2008)). This part of the star will be described bing the EoS of (Douchin & Haensel (2001)), which has beeiveler
using the SLy4 functional and by means of the Compressilij@itdiDrop Model [(Douchin et all (2000)). It allows for a sirapl
description of both the crust (inner and outer), but alsatierliquid-core transition. We match our EoS with the onel@ichin
& Haensel|(2001)) a ~ 0.08 fm~3. This small inconsistency in the EoS will ndtect the value of the maximum mass of the star,
but it introduces an error of at most 5% on its radius (Hebefiaf. (2010)). The study of the inhomogeneous phase of theiltS
our functional will be the subject of a forthcoming study.r®esults concerning the Mass-Radius relation are showigirIH(a).
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On the same plot, we also show the recent measurements aésrafdsS [(Demorest et lal. (2010); Antoniadis etlal. (2013w

are both compatible for aMg,, neutron star. We observe that our EoS gives a prediction atibig with the latest experimental
measurements giving a maximal valueMf= 1. 96Msun in the non- rotatlng case. The inclusion of extra degreesed#dom as

pions, kaons or h 2n (2000)), ad aekhe &ect of rotation (Salgado

etal. (1994a 1ldls (2003)). In view of the resultéSalg Imlb)) we could expect an increase b3 — 15% for
the results of our EoS The detailed study of theBeots goes beyond the scope of this paper and we leave it fiuttre.
T T T T T T T T T T T T T T T T T T T T
Antoniadis
2 -
Demorest
c1.5- . .
a
=
S 1t . .
0.5+ — —
I a)
" 1 " 1 " 1 L I n T T " 1 " 1 " 1 " 1 " 1 "
0.8 0.9 1 1.1 1.2 1.3 0.2 0.4 0.6 0.8 1 1.2
R [10 Km] n [fm3]

Fig. 17. (Colors online) In panel (a), we show the mass-radius m@dtr NS obtained with our EoS by solving TOV equations. e horizontal
bars refers to the two recent of NS masses measurerids,, = 1.97 + 0.04 given in [Demorest et hl. (2010)) aiyMs,, = 2.01 + 0.04

given in [Antoniadis et all (2013)). In panel (b), the masssity relation.

The radius of a NS is very flicult to extract from observations due to the several hymithene has to do on the atmosphere
composition. Diferent models (Suleimanov et al. (2011); Steiner et al. (pd&ad to slightly diferent values for the radius, but it
is nevertheless possible to give an upper value of arouriki for a NS with a mass.4Mg,,. See also discussion in_(Fortin ef al.
(2014)). From the EoS of our functional, we get 11.6 km, indareement with the original BBG results. In Higl 17(b), wews the
evolution of the maximum mass of the NS as a function of théraédensity of the star. It is worth noticing that recent swaints
of (Klahn et al. [(2006)) implies the absence of direct URCAgass for NS within a mass range of 1.5Ms,,. From Figl 1Y (b),
we can observe that the lowest value of the density at whicBAJRrocess take place correspond to a NS of masé Wgy,.

8. Conclusions

We have presented a new nucleonic Equation of State basdwke@rténded Skyrme functional. The inclusion of higher order
derivative terms allow us to give a more precise descriptibthe high-density region. By fixing the coupling constaotour
functional on the EoS ddb initio calculations, we have shown the possibility of extractinglgtically several quantities of strong
astrophysical interest as incompressibility, pressueffective mass. As shown in (Davesne etlal. (2015)), the higliergradients
allow us to grasp the correct physical behavior obtainedh w&itmicroscopic calculation. Our functional can be fitted toeo
microscopic calculations, thus providing a more powerdol for astrophysics than a simple interpolation procediline Skyrme
functional can be easily implemented to perform calcutedio all layers of the star, not only in its uniform phase (Dlon &

Haensell(2001); Pearson ef al. (2012)).
We have compared our results with other commonly adoptectifumals, namely the BCPM (Ball %I. %212@;,2gh14a);8|aarm

et al. [2015)) and the BSk functionals (Goriely etlal. (20 0); Gori [.(201 13)). Werbahown
that our model is complementary to the results obtaineddseldfferent group since it aims at reproducing as accurately asipes
BBG results in nuclear matter (including polarized maften)that the functional can be used to describe both groatelstoperties
and excited states.

Due to the simplicity of the calculations, the formalism temneasily extended to properly include finite-temperattieres. In
that case, it is necessary to replace the step function osadtuate the EoS of the system by a Fermi-Dirac distributgBonche
& Vautherin (1981)). These integrals can be approximateti analytical expressions as shown|by Antia (1993). Theiptess
temperature dependence of the coupling constants candstatiied by direct comparison with existing microscopicutations

at finite temperaturel_(Pandharipande & Ravehhall (1989%ure et al.[(1986)).
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