4 research outputs found

    Electrical detection of 31P spin quantum states

    Get PDF
    In recent years, a variety of solid-state qubits has been realized, including quantum dots, superconducting tunnel junctions and point defects. Due to its potential compatibility with existing microelectronics, the proposal by Kane based on phosphorus donors in Si has also been pursued intensively. A key issue of this concept is the readout of the P quantum state. While electrical measurements of magnetic resonance have been performed on single spins, the statistical nature of these experiments based on random telegraph noise measurements has impeded the readout of single spin states. In this letter, we demonstrate the measurement of the spin state of P donor electrons in silicon and the observation of Rabi flops by purely electric means, accomplished by coherent manipulation of spin-dependent charge carrier recombination between the P donor and paramagnetic localized states at the Si/SiO2 interface via pulsed electrically detected magnetic resonance. The electron spin information is shown to be coupled through the hyperfine interaction with the P nucleus, which demonstrates the feasibility of a recombination-based readout of nuclear spins

    Rare-earth solid-state qubits

    Get PDF
    Quantum bits (qubits) are the basic building blocks of any quantum computer. Superconducting qubits have been created with a 'top-down' approach that integrates superconducting devices into macroscopic electrical circuits [1-3], whereas electron-spin qubits have been demonstrated in quantum dots [4-6]. The phase coherence time (Tau2) and the single qubit figure of merit (QM) of superconducting and electron-spin qubits are similar -- Tau2 ~ microseconds and QM ~10-1000 below 100mK -- and it should be possible to scale-up these systems, which is essential for the development of any useful quantum computer. Bottom-up approaches based on dilute ensembles of spins have achieved much larger values of tau2 (up to tens of ms) [7, 8], but these systems cannot be scaled up, although some proposals for qubits based on 2D nanostructures should be scalable [9-11]. Here we report that a new family of spin qubits based on rare-earth ions demonstrates values of Tau2 (~ 50microseconds) and QM (~1400) at 2.5 K, which suggests that rare-earth qubits may, in principle, be suitable for scalable quantum information processing at 4He temperatures
    corecore