7,676 research outputs found

    A generalized linear Hubble law for an inhomogeneous barotropic Universe

    Get PDF
    In this work, I present a generalized linear Hubble law for a barotropic spherically symmetric inhomogeneous spacetime, which is in principle compatible with the acceleration of the cosmic expansion obtained as a result of high redshift Supernovae data. The new Hubble function, defined by this law, has two additional terms besides an expansion one, similar to the usual volume expansion one of the FLRW models, but now due to an angular expansion. The first additional term is dipolar and is a consequence of the existence of a kinematic acceleration of the observer, generated by a negative gradient of pressure or of mass-energy density. The second one is quadrupolar and due to the shear. Both additional terms are anisotropic for off-centre observers, because of to their dependence on a telescopic angle of observation. This generalized linear Hubble law could explain, in a cosmological setting, the observed large scale flow of matter, without to have recourse to peculiar velocity-type newtonian models. It is pointed out also, that the matter dipole direction should coincide with the CBR dipole one.Comment: 9 pages, LaTeX, to be published in Class. Quantum Gra

    Optical measurement of heteronuclear cross-relaxation interactions in Tm:YAG

    Get PDF
    We investigate cross-relaxation interactions between Tm and Al in Tm:YAG using two optical methods: spectral holeburning and stimulated echoes. These interactions lead to a reduction in the hyperfine lifetime at magnetic fields that bring the Tm hyperfine transition into resonance with an Al transition. We develop models for measured echo decay curves and holeburning spectra near a resonance, which are used to show that the Tm-Al interaction has a resonance width of 10~kHz and reduces the hyperfine lifetime to 0.5 ms. The antihole structure is consistent with an interaction dominated by the Al nearest neighbors at 3.0 Angstroms, with some contribution from the next nearest neighbors at 3.6 Angstroms.Comment: 13 pages, 9 figure

    Biological treatment of the knee with platelet-rich plasma or bone marrow aspirate concentrates

    Get PDF
    ABSTRACT — Knee pathologies including focal cartilage injuries, osteoarthritis (OA), and ligament injuries are common. The poor regeneration and healing potential of cartilage has led to the search for other treatment modalities with improved healing capacity. Furthermore, with an increasing elderly population that desires to remain active, the burden of knee pathologies is expected to increase. Increased sports participation and the desire to return to activities faster is also demanding more effective and minimally invasive treatment options. Thus, the use of biologic agents in the treatment of knee pathologies has emerged as a potential option. Despite the increasing use of biologic agents for knee pathology, there are conflicting results on the efficacy of these products. Furthermore, strong data supporting the optimal preparation methods and composition for widely used biologic agents, such as platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC), largely remain absent from the literature. This review presents the literature on the most commonly employed biologic agents for the different knee pathologies

    TELEPENSOUTH project: Measurement of the Earth gravitomagnetic field in a terrestrial laboratory

    Full text link
    We will expose a preliminary study on the feasibility of an experiment leading to a direct measurement of the gravitomagnetic field generated by the rotational motion of the Earth. This measurement would be achieved by means of an appropriate coupling of a TELEscope and a Foucault PENdulum in a laboratory on ground, preferably at the SOUTH pole. An experiment of this kind was firstly proposed by Braginski, Polnarev and Thorne, 18 years ago, but it was never re-analyzed.Comment: 7 pages, LaTeX, Springer style files included. Contribution to the Proceedings of the Spanish Relativity Meeting-ERE-2001 (Madrid, September 2001). To appear in the book "Relativistic Astrophysics", Lecture Notes in Physics, Springer Verlag (2002), edited by L. Fernandez-Jambrina, L.M. Gonzalez-Romer

    Survival and changes in the fine structure of selected tissues of Penaeus monodon Fabricius juveniles fed various carbohydrates

    Get PDF
    Penaeus monodon juveniles were reared on semipurified diets containing various carbohydrates (maltose, sucrose, dextrin, molasses, cassava starch, corn starch or sago palm starch). Significant differences were observed between the type as well as the level of carbohydrate in the diet on the survival of the juveniles. Results indicate that there does not seem to be any correlation between survival and the complexity of the carbohydrates

    Fullerene based devices for molecular electronics

    Get PDF
    We have investigated the electronic properties of a C_60 molecule in between carbon nanotube leads. This problem has been tackled within a quantum chemical treatment utilizing a density functional theory-based LCAO approach combined with the Landauer formalism. Owing to low-dimensionality, electron transport is very sensitive to the strength and geometry of interfacial bonds. Molecular contact between interfacial atoms and electrodes gives rise to a complex conductance dependence on the electron energy exhibiting spectral features of both the molecule and electrodes. These are attributed to the electronic structure of the C_60 molecule and to the local density of states of the leads, respectively.Comment: 4 pages, 2 figures, to appear in Physica

    Observational Δν\Delta\nu-ρˉ\bar\rho relation for δ\delta Sct stars using eclipsing binaries and space photometry

    Full text link
    Delta Scuti (δ\delta Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modelling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a δ\delta Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for δ\delta Sct stars.Comment: 11 pages, including 2 pages of appendix, 2 figures, 2 tables, accepted for publication in ApJ

    A Conformal Mapping and Isothermal Perfect Fluid Model

    Get PDF
    Instead of conformal to flat spacetime, we take the metric conformal to a spacetime which can be thought of as ``minimally'' curved in the sense that free particles experience no gravitational force yet it has non-zero curvature. The base spacetime can be written in the Kerr-Schild form in spherical polar coordinates. The conformal metric then admits the unique three parameter family of perfect fluid solution which is static and inhomogeneous. The density and pressure fall off in the curvature radial coordinates as R2,R^{-2}, for unbounded cosmological model with a barotropic equation of state. This is the characteristic of isothermal fluid. We thus have an ansatz for isothermal perfect fluid model. The solution can also represent bounded fluid spheres.Comment: 10 pages, TeX versio

    Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)

    Get PDF
    The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers
    corecore