8 research outputs found

    Analgesic and anti-inflammatory activities of salicylaldehyde 2-chlorobenzoyl hydrazone (H2LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H 2LASSBio-1064) and their zinc(II) complexes

    Get PDF
    Salicylaldehyde 2-chlorobenzoyl hydrazone (H 2LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H 2LASSBio-1064) and their complexes [Zn(LASSBio- 466)H 2O] 2 (1) and [Zn(HLASSBio-1064)Cl] 2 (2) were evaluated in animal models of peripheral and central nociception, and acute inflammation. All studied compounds significantly inhibited acetic acid-induced writhing response. Upon coordination the antinociceptive activity was favored in the complex 1. H 2LASSBio-466 inhibited only the first phase of the formalin test, while 1 was active in the second phase, like indomethacin, indicating its ability to inhibit nociception associated with the inflammatory response. Hence coordination to zinc(II) altered the pharmacological profile of H 2LASSBio-466. H2LASSBio-1064 inhibited both phases but this effect was not improved by coordination. The studied compounds did not increase the latency of response in the hot plate model, indicating their lack of central anti-nociceptive activity. All compounds showed levels of inhibition of zymosan-induced peritonitis comparable or superior to indomethacin, indicating an expressive anti-inflammatory profile.Facultad de Ciencias Exacta

    Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells

    No full text
    The nuclease activity and the cytotoxicity toward human leukemia cancer cells of iron complexes, [Fe(HPClNOL) Cl-2]NO3 (1), [Cl(HPClNOL)Fe(mu-O)Fe(HPClNOL)Cl]Cl-2 center dot 2H(2)O (2), and [(SO4)(HPCINOL)Fe(mu-O)Fe(HPCINOL)(SO4)]center dot 6H(2)O (3) (HPCINOL = 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol), were investigated. Each complex was able to promote plasmid DNA cleavage and change the supercoiled form of the plasmid to circular and linear ones. Kinetic data revealed that (1), (2) and (3) increase the rate of DNA hydrolysis about 278, 192 and 339 million-fold, respectively. The activity of the complexes was inhibited by distamycin, indicating that they interact with the minor groove of the DNA. The cytotoxic activity of the complexes toward U937, HL-60, Jukart and THP-1 leukemia cancer cells was studied employing 3-(4,5-dimethythiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT), fluorescence and electronic transmission microscopies, flow cytometry and a cytochrome C release assay. Compound (2) has the highest activity toward cancer cells and is the least toxic for normal ones (i.e. peripheral blood mononuclear cells (PBMCs)). In contrast, compound (1) is the least active toward cancer cells but displays the highest toxicity toward normal cells. Transmission electronic microscopy indicates that cell death shows features typical of apoptotic cells, which was confirmed using the annexin V-FITC/PI (fluorescein isothiocyanate/propidium iodide) assay. Furthermore, our data demonstrate that at an early stage during the treatment with complex (2) mitochondria lose their transmembrane potential, resulting in cytochrome C release. A quantification of caspases 3,9 (intrinsic apoptosis pathway) and caspase 8 (extrinsic apoptosis pathway) indicated that both the intrinsic (via mitochondria) and extrinsic (via death receptors) pathways are involved in the apoptotic stimuli. (C) 2013 Elsevier Inc. All rights reserved

    Binuclear zinc(II) complexes with the anti-inflammatory compounds salicylaldehyde semicarbazone and salicylaldehyde-4-chlorobenzoyl hydrazone (H(2)LASSBio-1064)

    No full text
    Complexes [Zn(2)(HL(1))(2)(CH(3)COO)(2)] (1) and [Zn(2)(L(2))(2)] (2) were synthesized with salicylaldehyde semicarbazone (H(2)L(1)) and salicylaldehyde-4-chlorobenzoyl hydrazone (H(2)LASSBio-1064, H(2)L(2)), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn(2)(HL(2))(2)(Cl)(2)] (3) in 1:9 DMSO:acetone crystals of [Zn(2)(L(2))(2)(H(2)O)(2)]center dot[Zn(2)(L(2))(2)(DMSO)(4)] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes. (C) 2011 Elsevier Ltd. All rights reserved.CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)INCT-INOFAR/CNPqINCT-INOFAR/CNPq[proc.573.364/2008-6]FAPESP (Brazil)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET)CONICET (Argentina

    2-Acetylpyridine- and 2-benzoylpyridine-derived hydrazones and their gallium(III) complexes are highly cytotoxic to glioma cells

    No full text
    2-Acetylpyridine-phenylhydrazone (H2AcPh), its para-chlorophenylhydrazone (H2AcpClPh) and para-nitrophenylhydrazone (H2AcpNO(2)Ph) analogues, the corresponding 2-benzoylpyridine-derived hydrazones (H2BzPh, H2BzpClPh and H2BzpNO(2)Ph) and their gallium(III) complexes were assayed for their cytotoxic activity against U87 (expressing wild-type p53 protein) and T98 (expressing mutant p53 protein) glioma cells. IC50 values against both glioma cells and against the MRC5 (human fetal lung fibroblast) lineage were obtained for the hydrazones, but not for their gallium(III) complexes, due to their low solubility. Hydrazones were highly cytotoxic at nanomolar doses against U87 and T98 cells. The therapeutic indexes (TI = IC50MRC5/IC50glioma) were 2-660 for T98 cells and 28-5000 for U87 cells, indicating that the studied hydrazones could be good antitumor drug candidates to treat brain tumors. (C) 2012 Elsevier Masson SAS. All rights reserved.CNPqCNPqINCT-INOFAR [Proc. CNPq 573.364/2008-6]INCTINOFARINCTCataliseINCT-CATALISEFAPEMIGFAPEMIGCNENCNENFAPESP (Brazil)FAPESP (Brazil)CONICET (Argentina)CONICET (Argentina

    Analgesic and Anti-Inflammatory Activities of Salicylaldehyde 2-Chlorobenzoyl Hydrazone (H(2)LASSBio-466), Salicylaldehyde 4-Chlorobenzoyl Hydrazone (H(2)LASSBio-1064) and Their Zinc(II) Complexes

    Get PDF
    Salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their complexes [Zn(LASSBio-466) H(2)O](2) (1) and [Zn(HLASSBio-1064) Cl](2) (2) were evaluated in animal models of peripheral and central nociception, and acute inflammation. All studied compounds significantly inhibited acetic acid-induced writhing response. Upon coordination the anti-nociceptive activity was favored in the complex 1. H(2)LASSBio-466 inhibited only the first phase of the formalin test, while 1 was active in the second phase, like indomethacin, indicating its ability to inhibit nociception associated with the inflammatory response. Hence coordination to zinc(II) altered the pharmacological profile of H(2)LASSBio-466. H(2)LASSBio-1064 inhibited both phases but this effect was not improved by coordination. The studied compounds did not increase the latency of response in the hot plate model, indicating their lack of central anti-nociceptive activity. All compounds showed levels of inhibition of zymosan-induced peritonitis comparable or superior to indomethacin, indicating an expressive anti-inflammatory profile.CNPq, INCT-INOFAR[573.364/2008-6]FAPESP (Brazil)CONICET (Argentina
    corecore