244 research outputs found
Quantifying whether different demographic models produce incongruent results on population dynamics of two long-term studied rodent species
1. Population density (ind/ha) of long-term (>15 years) series of CMR populations, using distinct demographic models designed for both open and closed populations, were analysed for two sympatric species of rodents (Myodes glareolus and Apodemus flavicollis) from a mountain area in central Italy, in order to test the relative performance of various employed demographic models. In particular, the hypothesis that enumeration models systematically underestimate the population size of a given population was tested.2. Overall, we compared the performance of 7 distinct demographic models, including both closed and open models, for each study species. Although the two species revealed remarkable intrinsic differences in demography traits (for instance, a lower propensity for being recaptured in Apodemus flavicollis), the Robust Design appeared to be the best fitting model, showing that it is the most suitable model for long-term studies.3. Among the various analysed demographic models, Jolly-Seber returned the lower estimates of population density for both species. Thus, this demographic model could not be suggested for being applied for long-term studies of small mammal populations because it tends to remarkably underestimate the effective population size. Nonetheless, yearly estimates of population density by Jolly-Seber correlated positively with yearly estimates of population density by closed population models, thus showing that interannual trends in population dynamics were uncovered by both types of demographic models, although with different values in terms of true population size
Circadian activity of small brown bear populations living in human-dominated landscapes
Whereas numerous studies on large carnivores have focused on analyzing spatial patterns and habitat use, the temporal dimension of their activity has been relatively little investigated, making this a topic of growing interest, especially in human-dominated landscapes. Relict and isolated Apennine brown bears (Ursus arctos marsicanus) have been living in a human-modified landscape since millennia, but no information is available on their activity patterns. By means of GPS telemetry (26,880 GPS locations collected from 18 adult Apennine brown bears) we investigated their circadian rhythms, using hourly movement rates as an index of bear activity. Based on a Bayesian modeling approach, circadian activity of Apennine brown bears was described by a bimodal curve, with peaks of activity around sunrise and sunset. We revealed seasonal effects, with bears exhibiting higher movement rates throughout the mating season, but no relevant influence of sex. In addition, bears increased their movement rate at distances < 100–500 m to roads and settlements exclusively during spring and late summer, suggesting a trade-off between foraging opportunities and risk avoidance. The absence of a marked nocturnality in Apennine brown bears suggests a relatively low degree of habitat encroachment and disturbance by humans. Yet, the occurrence of crepuscular activity patterns and the responses in proximity of anthropogenic landscape features likely indicate a coadaptation by bears to human presence through a shift in their temporal niche. Further studies should aim to unveil fitness implications of such modifications in activity patterns
Recommended from our members
Cost of Coexisting with a Relict Large Carnivore Population: Impact of Apennine Brown Bears, 2005-2015.
Human-carnivore conflicts are a major conservation issue. As bears are expanding their range in Europe's human-modified landscapes, it is increasingly important to understand, prevent, and address human-bear conflicts and evaluate mitigation strategies in areas of historical coexistence. Based on verified claims, we assessed costs, patterns, and drivers of bear damages in the relict Apennine brown bear population in the Abruzzo Lazio and Molise National Park (PNALM), central Italy. During 2005-2015, 203 ± 71 (SD) damage events were verified annually, equivalent to 75,987 ± 30,038 €/year paid for compensation. Most damages occurred in summer and fall, with livestock depredation, especially sheep and cattle calves, prevailing over other types of damages, with apiaries ranking second in costs of compensation. Transhumant livestock owners were less impacted than residential ones, and farms that adopted prevention measures loaned from the PNALM were less susceptible to bear damages. Livestock farms chronically damaged by bears represented 8 ± 3% of those annually impacted, corresponding to 24 ± 6% of compensation costs. Further improvements in the conflict mitigation policy adopted by the PNALM include integrated prevention, conditional compensation, and participatory processes. We discuss the implications of our study for Human-bear coexistence in broader contexts
755 Rat engineered heart tissue is a novel in vitro model to evaluate cardiomyocyte proliferation and fibroblast activation after injury
Abstract
Aims
Adult mammals, including humans, fail to regenerate the majority of the lost cardiomyocytes (CMs) that are replaced with scar tissue after injury. This lack of regenerative response is due to the loss of proliferative capacity of adult CMs which in mice occurs 7 days after birth. An in vitro model that recapitulates these changes has not been developed yet. Using rat engineered heart tissues (rEHTs) we have developed a custom-made cryoinjury system to test the hypothesis that maturation of CMs in EHTs regulates the proliferative response of CMs after injury.
Methods
rEHT were generated using neonatal rat heart cells. A discrete lesion was produced on the mid-section of mature (Day 18) and immature (Day 6) EHTs using a custom-made system based on liquid nitrogen and a 23G needle and medium was supplemented with EdU for 48 h.
Results
Cryoinjury in mature EHTs produces a localized injury, preserving their residual contractile activity that does not recover over time. We observed a significant increase of EdU+CMs post injury (6.3 ± 1.9% vs. 10.1 ± 1.6%) without significant changes in Ki67+ and pH3+ CMs suggesting that cryoinjury in mature rEHTs induces DNA synthesis but not CM proliferation. Injury in mature EHTs induced also significant proliferation and activation of fibroblasts with collagen deposition. Interestingly, cryoinjury performed in immature EHTs stimulated a significant proliferative response in CMs
Conclusions
Similar to adult rodents, we show that cryoinjury induces DNA synthesis in CMs without proliferative response and contractile recovery. On the other hand, cryoinjury in immature EHTs leads to CMs proliferation. Moreover, mature EHT fibroblast response to injury retraces the activation progression of cardiac fibroblast after infarction characterized by proliferation, increase of activation markers, increase of collagen deposition suggesting EHTs as a novel model to investigate the biology of cardiac regeneration upon injury
Experimental feeding validates nanofluidic array technology for DNA detection of ungulate prey in wolf scats
The study of carnivores' diet is a key component to enhance knowledge on the ecology of predators and their effect on prey populations. Although molecular approaches to detect prey DNA in carnivore scats are improving, the validation of their accuracy, a prerequisite for reliable applications within ecological frameworks, is still lagging behind the methodological advances. Indeed, variation in detection probability among prey species can occur, representing a potentially insidious source of bias in food-habit studies of carnivores. Calibration of DNA-based methods involves the optimization of specificity and sensitivity and, whereas priority is usually given to the former to avoid false positives, sensitivity is rarely investigated so that false negatives may be largely overlooked. We conducted feeding trials with captive wolves (Canis lupus) to validate a nanofluidic array technology recently developed for the detection of multiple prey species in scats. Using 371 scat samples from 12 wolves fed with a single-prey diet, the sensitivity of our nanofluidic array method varied between 0.45 and 0.95 for the six main ungulate prey species. The method sensitivity was enhanced by using multiple markers per species and by a relatively low threshold of number of amplifying markers required to confirm a detection. Yet, at least two markers should be used to avoid false positives. By acknowledging sources of bias in sensitivity to reliably interpret the results of DNA-based dietary methods, our study highlights the relevance of feeding experiments to optimally calibrate the relative thresholds to define a positive detection and investigate the occurrence and extent of biases in sensitivity
Distribution of the brown bear (Ursus arctos marsicanus) in the Central Apennines, Italy, 2005-2014
Despite its critical conservation status, no formal estimate of the Apennine brown bear (Ursus arctos marsicanus) distribution has ever been attempted, nor a coordinated effort to compile and verify all recent occurrences has ever been ensured. We used 48331 verified bear location data collected by qualified personnel from 2005ï€2014 in the central Apennines, Italy, to estimate the current distribution of Apennine brown bears. Data sources included telemetry relocations, scats and DNA-verified hair samples, sightings, indirect signs of presence, photos from camera traps, and damage to properties. Using a grid-based zonal analysis to transform raw data density, we applied ordinary kriging and estimated a 4923 km2 main bear distribution, encompassing the historical stronghold of the bear population, and including a smaller (1460 km2) area of stable occupancy of reproducing female bears. National and Regional Parks cover 38.8% of the main bear distribution, plus an additional 19.5% encompassed by the Natura 2000 network alone. Despite some methodological and sampling problems related to spatial and temporal variation in sampling effort at the landscape scale, our approach provides an approximation of the current bear distribution that is suited to frequently update the distribution map. Future monitoring of this bear population would benefit from estimating detectability across a range on environmental and sampling variables, and from intensifying the collection of bear presence data in the peripheral portions of the distribution
Multiple species-specific molecular markers using nanofluidic array as a tool to detect prey DNA from carnivore scats
Large carnivore feeding ecology plays a crucial role for management and conservation for predators and their prey. One of the keys to this kind of research is to identify the species composition in the predator diet, for example, prey determination from scat content. DNA-based methods applied to detect prey in predators' scats are viable alternatives to traditional macroscopic approaches, showing an increased reliability and higher prey detection rate. Here, we developed a molecular method for prey species identification in wolf (Canis lupus) scats using multiple species-specific marker loci on the cytochrome b gene for 18 target species. The final panel consisted of 80 assays, with a minimum of four markers per target species, and that amplified specifically when using a high-throughput Nanofluidic array technology (Fluidigm Inc.). As a practical example, we applied the method to identify target prey species DNA in 80 wolf scats collected in Sweden. Depending on the number of amplifying markers required to obtain a positive species call in a scat, the success in determining at least one prey species from the scats ranged from 44% to 92%. Although we highlight the need to evaluate the optimal number of markers for sensitive target species detection, the developed method is a fast and cost-efficient tool for prey identification in wolf scats and it also has the potential to be further developed and applied to other areas and large carnivores as well
First core microsatellite panel identification in Apennine brown bears (Ursus arctos marsicanus):a collaborative approach
Additional file 8: Table S7. Allelic patterns in 2000–2010 (pop1 - pre-arctos) and 2011–2017 (pop2 - arctos & post arctos). Na number of different alleles, Na Freq. ≥5% number of alleles with a frequency ≥ 5%, Ne number of effective alleles, I Shannon Information Index, No. Private Alleles number of private alleles, Ho observed heterozygosity and He expected heterozygosity
Effects of emissions caps on the costs and feasibility of low-carbon hydrogen in the European ammonia industry
The European ammonia industry emits 36 million tons of carbon dioxide annually, primarily from steam methane reforming (SMR) hydrogen production. These emissions can be mitigated by producing hydrogen via water electrolysis using dedicated renewables with grid backup. This study investigates the impact of decarbonization targets for hydrogen synthesis on the economic viability and technical feasibility of retrofitting existing European ammonia plants for on-site, semi-islanded electrolytic hydrogen production. Results show that electrolytic hydrogen cuts emissions, on average, by 85% (36%-100% based on grid price and carbon intensity), even without enforcing emission limits. However, an optimal lifespan average well-to-gate emission cap of 1 kg carbon dioxide equivalent (CO2e)/kg H2 leads to a 95% reduction (92%-100%) while maintaining cost-competitiveness with SMR in renewable-rich regions (mean levelized cost of hydrogen (LCOH) of 4.1 euro/kg H2). Conversely, a 100% emissions reduction target dramatically increases costs (mean LCOH: 6.3 euro/kg H2) and land area for renewables installations, likely hindering the transition to electrolytic hydrogen in regions with poor renewables and limited land. Increasing plant flexibility effectively reduces costs, particularly in off-grid plants (mean reduction: 32%). This work guides policymakers in defining cost-effective decarbonization targets and identifying region-based strategies to support an electrolytic hydrogen-fed ammonia industry
- …