15 research outputs found

    Acute Capsaicin Analog Supplementation Improves 400 M and 3000 M Running Time-Trial Performance

    Get PDF
    International Journal of Exercise Science 13(2): 755-765, 2020. Objectives: Performance in running-based sport depends on the ability to perform repetitive high intensity muscle contractions. Previous studies have shown that capsaicin analog (CAP) (i.e. Capsiate) supplementation may improve this performance. The purpose of this study was to investigate the acute effect of CAP supplementation on short (400 m) and middle distance (3000 m) running time-trial performance, maximum heart rate (HR), and rate of perceived exertion (RPE). Methods: Twelve physically active men completed four randomized, double-blind trials: CAP condition (12 mg) or a placebo condition. Forty-five minutes after supplementation, the participants performed a 400- or 3000-meter running time trial. Time (in seconds) was recorded. HR was analyzed at rest and immediately post-exercise, and RPE was collected immediately after exercise. Results: For both the 400 m time-trial (CAP = 66.4 + 4.2 sec vs Placebo = 67.1 + 4.8 sec, p = 0.046) and the 3000 m time-trial (CAP = 893.9 ± 46.8 sec vs Placebo = 915.2 ± 67.6 sec, p = 0.015), the time in seconds was significantly less in the CAP compared to placebo conditions. There were no statistically significant differences for HR and RPE in any condition. Conclusion: In summary, acute CAP supplementation improved 400 m and 3000 m running time-trial performance in a distance-dependent way but without modifying the HR and RPE

    Short-term high- and moderate-intensity training modifies inflammatory and metabolic factors in response to acute exercise

    No full text
    To compare the acute and chronic effects of high intensity intermittent training (HIIT) and steady state training (SST) on the metabolic profile and inflammatory response in physically active men. Thirty recreationally active men were randomly allocated to a control group (n = 10), HIIT group (n = 10), or SST group (n = 10). For 5 weeks, three times per week, subjects performed HIIT (5 km 1-min at 100% of maximal aerobic speed interspersed by 1-min passive recovery) or SST (5 km at 70% of maximal aerobic speed) while the control group did not perform training. Blood samples were collected at fasting (~12 h), pre-exercise, immediately post, and 60 min post-acute exercise session (pre- and post-5 weeks training). Blood samples were analyzed for glucose, non-ester fatty acid (NEFA), and cytokine (IL-6, IL-10, and TNF-α) levels through a three-way analysis (group, period, and moment of measurement) with repeated measures in the second and third factors. The results showed an effect of moment of measurement (acute session) with greater values to TNF-α and glucose immediately post the exercise when compared to pre exercise session, independently of group or training period. For IL-6 there was an interaction effect for group and moment of measurement (acute session) the increase occurred immediately post-exercise session and post-60 min in the HIIT group while in the SST the increase was observed only 60 min post, independently of training period. For IL-10, there was an interaction for training period (pre- and post-training) and moment of measurement (acute session), in which in pre-training, pre-exercise values were lower than immediately and 60 min post-exercise, in post-training period pre-exercise values were lower than immediately post-exercise and immediately post-exercise lower than 60 min post, it was also observed that values immediately post-exercise were lower pre- than post-training, being all results independently of intensity (group). Our main result point to an interaction (acute and chronic) for IL-10 showing attenuation post-training period independent of exercise intensity.8856FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2016/16712-8; 2016/12145-1; 2015/12979-7; 2015/11302-

    Short-Term High- and Moderate-Intensity Training Modifies Inflammatory and Metabolic Factors in Response to Acute Exercise

    No full text
    Purpose: To compare the acute and chronic effects of high intensity intermittent training (HIIT) and steady state training (SST) on the metabolic profile and inflammatory response in physically active men.Methods: Thirty recreationally active men were randomly allocated to a control group (n = 10), HIIT group (n = 10), or SST group (n = 10). For 5 weeks, three times per week, subjects performed HIIT (5 km 1-min at 100% of maximal aerobic speed interspersed by 1-min passive recovery) or SST (5 km at 70% of maximal aerobic speed) while the control group did not perform training. Blood samples were collected at fasting (~12 h), pre-exercise, immediately post, and 60 min post-acute exercise session (pre- and post-5 weeks training). Blood samples were analyzed for glucose, non-ester fatty acid (NEFA), and cytokine (IL-6, IL-10, and TNF-α) levels through a three-way analysis (group, period, and moment of measurement) with repeated measures in the second and third factors.Results: The results showed an effect of moment of measurement (acute session) with greater values to TNF-α and glucose immediately post the exercise when compared to pre exercise session, independently of group or training period. For IL-6 there was an interaction effect for group and moment of measurement (acute session) the increase occurred immediately post-exercise session and post-60 min in the HIIT group while in the SST the increase was observed only 60 min post, independently of training period. For IL-10, there was an interaction for training period (pre- and post-training) and moment of measurement (acute session), in which in pre-training, pre-exercise values were lower than immediately and 60 min post-exercise, in post-training period pre-exercise values were lower than immediately post-exercise and immediately post-exercise lower than 60 min post, it was also observed that values immediately post-exercise were lower pre- than post-training, being all results independently of intensity (group).Conclusion: Our main result point to an interaction (acute and chronic) for IL-10 showing attenuation post-training period independent of exercise intensity

    The acute effects of thermogenic fitness drink formulas containing 140 mg and 100 mg of caffeine on energy expenditure and fat metabolism at rest and during exercise

    No full text
    Background Thermogenic fitness drink formulas (TFD) have been shown to increase energy expenditure and markers of lipid metabolism. The purpose of the current study was to compare TFD formulas containing different caffeine concentrations versus a placebo drink on energy expenditure and lipid metabolism at rest and during exercise. Methods Thirty-two recreationally active participants (22.9 ± 0.7 y, 167.1 ± 1.4 cm, 68.8 ± 2.0 kg, 24.0 ± 1.2% fat) who were regular caffeine consumers, participated in this randomized, double-blind, crossover design study. Participants reported to the laboratory on three occasions, each of which required consumption of either a TFD containing 140 mg or 100 mg of caffeine or a placebo. Baseline measurements of resting energy expenditure (REE) and resting fat oxidation (RFO) were assessed using indirect calorimetry as well as measurements of serum glycerol concentration. Measurements were repeated at 30, 60, 90 min post-ingestion. Following resting measures, participants completed a graded exercise test to determine maximal oxygen uptake (V̇O2max), maximal fat oxidation (MFO) and the exercise intensity that elicits MFO (Fatmax), and total energy expenditure (EE). Results A significant interaction was shown for REE (p < 0.01) and RFO (p < 0.01). Area under the curve analysis showed an increased REE for the 140 mg compared to the 100 mg formula (p = 0.02) and placebo (p < 0.01) and an increased REE for the 100 mg formula compared to placebo (p = 0.02). RFO significantly decreased for caffeinated formulas at 30 min post ingestion compared to placebo and baseline (p < 0.01) and significantly increased for the 140 mg formula at 60 min post-ingestion (p = 0.03). A main effect was shown for serum glycerol concentrations over time (p < 0.01). No significant differences were shown for V̇O2max (p = 0.12), Fatmax (p = 0.22), and MFO (p = 0.05), and EE (p = 0.08) across drinks. Conclusions Our results suggest that TFD formulas containing 100 and 140 mg of caffeine are effective in increasing REE and that a 40 mg of caffeine difference between the tested formulas may impact REE and RFO in healthy individuals within 60 min of ingestion

    Immediate Effects of Endurance Exercise on Subsequent Strength Performance

    No full text
    When strength training is conducted subsequent to endurance loading, central and peripheral fatigue mechanisms can contribute to decremented strength-type performance. Any decremented strength performance may be influenced by programme variables including the relief period between endurance and strength loadings, the modality, volume and intensity of endurance loading, and the method by which strength-type performance is assessed. The aforementioned programme variables are discussed here, as is the possible potentiating effect of endurance loading, on strength performance. The available evidence base is reviewed and implications for practice and recommendations for effectively programming strength training/performance around endurance loadings are presented
    corecore