1,704 research outputs found

    Green synthesis of vanillin: Pervaporation and dialysis for process intensification in a membrane reactor

    Get PDF
    In the present work, two different membrane processes (pervaporation and dialysis) are compared in view of their utilization in a membrane reactor, where vanillin, which is probably the most important aroma of the food industry, is synthesized in a green and sustainable way. The utilized precursor (ferulic acid, which is possibly a natural product from agricultural wastes) is partially oxidized (photocatalytically or biologically) and the product is continuously recovered from the reacting solution by the membrane process to avoid its degradation. It is observed that pervaporation is much more selective towards vanillin than dialysis, but the permeate flux of dialysis is much higher. Furthermore, dialysis can work also at lower temperatures and can be used to continuously restore the consumed substrate into the reacting mixture. A mathematical model of the integrated process (reaction combined with membrane separation) reproduces quite satisfactorily the experimental results and can be used for the analysis and the design of the process

    Noah and Cam in East African Mythology

    Get PDF

    Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis

    Get PDF
    This review provides the reader with a general overview on heterogeneous photocatalytic oxidation mechanisms in the presence of TiO2, with a special address to conversion of aliphatic and aromatic organic species. The aim was to clarify the steps of the photo-oxidation of the various classes of compounds and to relate them with the properties of the catalysts and the experimental conditions used. Reactions carried out to perform complete degradation and photocatalytic partial oxidations have been deeply discussed. Recent isotopic studies highlighted new reaction pathways concerning partial oxidation of alcohols to aldehyde and oxidation of benzene while EPR investigations confirmed that not only the photogenerated hole but also the OH radicals are involved in the oxidation of the substrates

    Sequential biological and photocatalysis based treatments for shipboard slop purification: A pilot plant investigation

    Get PDF
    This study investigated the treatment of a shipboard slop containing commercial gasoline in a pilot plant scale consisting of a membrane biological reactor (MBR) and photocatalytic reactor (PCR) acting in series. The MBR contributed for approximately 70% to the overall slop purification. More precisely, the biological process was able to remove approximately 40%, on average, of the organic pollution in the slop. Nevertheless, the membrane was capable to retain a large amount of organic molecules within the system, amounting for a further 30% of the influent total organic content removal. However, this affected the membrane fouling, thus resulting in the increase of the pore blocking mechanism that accounted for approximately 20% to the total resistance to filtration (2.85∙10 13 m −1 ), even if a significant restoration of the original membrane permeability was obtained after chemical cleanings. On the other hand, the biological treatment produced a clear solution for the photocatalytic system, thereby optimizing the light penetration and generation of highly oxidizing active oxygen species that enabled the degradation of bio-recalcitrant compounds. Indeed, low total organic carbon (TOC) values (<10 mg L −1 ) were achieved in the output of the photocatalytic reactor by means of only 60 Einstein (E) of cumulative impinging energy after the addition of K 2 S 2 O 8 . Overall, coupling the two processes enabled very high TOC removal (ca. 95%)

    Extruded Expanded Polystyrene Sheets Coated by TiO2 as New Photocatalitic Materials for Foodstuffs Packaging

    Get PDF
    Nanostructured, photoactive anatase TiO2 sol prepared under very mild conditions using titanium tetraisopropoxide as the precursor is used to functionalise extruded expanded polystyrene (XPS) sheets by spray-coating resulting in stable and active materials functionalised by TiO2 nanoparticles. Photocatalytic tests of these sheets performed in a batch reactor in gas–solid system under UV irradiation show their successful activity in degrading probe molecules (2-propanol, trimethylamine and ethene). Raman spectra ensure the deposition of TiO2 as crystalline anatase phase on the polymer surface. The presence of TiO2 with respect to polymer surface can be observed in SEM images coupled to EDAX mapping allowing to monitor the surface morphology and the distribution of TiO2 particles. Finally thermoforming of these sheets in industrial standard equipment leads to useful containers for foodstuffs

    C3N4 for CO2 photoreduction: catalyst performance and stability in batch and continuous reactor

    Get PDF
    In this study, various C3N4 samples were prepared and characterized. CO2 photoreduction was carried out by using C3N4 as powder and coated on glass support in a batch reactor or embedded in a Nafion membrane in a continuous reacto

    Visible Light Induced Oxidation of Trans-ferulic Acid by TiO2 Photocatalysis

    Get PDF
    The oxidation of trans-ferulic acid (C 10H 10O 4) in aqueous TiO 2 dispersion occurs via the formation of a charge-transfer complex on the TiO 2 surface that is able to absorb visible light (\u3bb 65 400 nm). The main product is CO 2, whereas secondary oxidation products are organic species such as vanillin, caffeic acid, homovanillic acid, and vanillylmandelic acid. Oxidation through the formation of a charge-transfer complex occurs only in the presence of specific TiO 2 samples. Experiments in the absence of oxygen, in the presence of bromate ions and by using a phosphate-modified TiO 2, have been carried out for investigating the reaction mechanism. In order to study the interaction between trans-ferulic acid and TiO 2 surface and to characterize the charge-transfer complex, UV-Vis diffuse reflectance and FT-IR spectroscopies have been used. FT-IR characterization of TiO 2 samples in contact with the aqueous trans-ferulic acid solution indicates that the charge-transfer complex formation occurs via adsorption of bidentate ferulate species

    The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance

    Get PDF
    Heterogeneous photocatalysis is a process of great potential for pollutant abatement and waste treatment. In order to improve the overall performance of the photoprocess, heterogeneous photocatalysis is being combined with physical or chemical operations, which affect the chemical kinetics and/or the overall ef\ufb01ciency. This review addresses the various possibilities to couple heterogeneous photocatalysis with other technologies to photodegrade organic and inorganic pollutants dissolved in actual or synthetic aqueous ef\ufb02uents. These combinations increase the photoprocess ef\ufb01ciency by decreasing the reaction time in respect to the separated operations or they decrease the cost in respect of heterogeneous photocatalysis alone, generally in terms of light energy. Depending on the operation coupled with heterogeneous photocatalysis, two categories of combinations exist. When the coupling is with ultrasonic irradiation, photo-Fenton reaction, ozonation, or electrochemical treatment, the combination affects the photocatalytic mechanisms thus improving the ef\ufb01ciency of the photocatalytic process. When the coupling is with biological treatment, membrane reactor, membrane photoreactor, or physical adsorption, the combination does not affect the photocatalytic mechanisms but it improves the ef\ufb01ciency of the overall process. The choice of the coupling is related to the type of wastewater to be treated. A synergistic effect, giving rise to an improvement of the ef\ufb01ciency of the photocatalytic process, has been reported in the literature for many cases

    Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation

    Get PDF
    Titanium dioxide samples were prepared in the presence of different amounts of fluorine via hydrothermal method. It has been found that the presence of fluoride influenced the physico-chemical properties of TiO2 in various ways as polymorphic form stability, surface hydroxylation, generation of hydroxyl radicals under irradiation and formation of Ti3+ centers and oxygen vacancies. The generation rate of [rad]OH radicals was investigated by the photoluminescence technique in the presence of terephthalic acid. X-ray diffractometry indicated that fluorine stabilized the anatase TiO2. X-Ray photoelectron spectroscopy (XPS) revealed the presence of fluorine on the surface and the shift of the valence band edge towards less negative potentials, electron paramagnetic resonance (EPR) confirmed the formation of Ti3+ in the bulk of the photocatalysts, UV–vis spectra showed the extension of the TiO2 photo-response in the visible light region. 2-Propanol degradation and 4-methoxybenzyl alcohol partial oxidation were studied as probe reactions by using the home prepared powders as photocatalysts. Surprisingly, the photocatalytic activity resulted to be mainly affected by [rad]OH radicals formation ability under irradiation, rather than by the presence of {0 0 1} facets, although it cannot be excluded that the latter could influence the ability to form radicals under irradiation
    corecore