2,124 research outputs found

    Solidification of undercooled liquids

    Get PDF
    During rapid solidification processing (RSP) the amount of liquid undercooling is an important factor in determining microstructural development by controlling phase selection during nucleation and morphological evolution during crystal growth. While undercooling is an inherent feature of many techniques of RSP, the deepest undercoolings and most controlled studies have been possible in carefully prepared fine droplet samples. From past work and recent advances in studies of nucleation kinetics it has become clear that the initiation of crystallization during RSP is governed usually by heterogeneous sites located at surfaces. With known nucleant sites, it has been possible to identify specific pathways of metastable phase formation and microstructural development in alloys. These advances have allowed for a clearer assessment of the interplay between undercooling, cooling rate and particle size statistics in structure formation. New approaches to the examination of growth processes have been developed to follow the thermal behavior and morphology in small samples in the period of rapid crystallization and recalescence. Based upon the new experimental information from these studies, useful models can be developed for the overall solidification process to include nucleation behavior, thermodynamic constraints, thermal history, growth kinetics, solute redistribution and resulting structures. From the refinement of knowledge concerning the underlying factors that govern RSP a basis is emerging for an effective alloy design and processing strategy

    T1T_1- and T2T_2-spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects

    Full text link
    A study of donor electron spins and spin--dependent electronic transitions involving phosphorous (31^{31}P) atoms in proximity of the (111) oriented crystalline silicon (c-Si) to silicon dioxide (SiO2_{2}) interface is presented for [31^{31}P] = 1015^{15} cm3\mathrm{cm}^{-3} and [31^{31}P] = 1016^{16} cm3\mathrm{cm}^{-3} at about liquid 4^4He temperatures (T=5T = 5 K15\mathrm{K} - 15 K\mathrm{K}). Using pulsed electrically detected magnetic resonance (pEDMR), spin--dependent transitions between the \Phos donor state and two distinguishable interface states are observed, namely (i) \Pb centers which can be identified by their characteristic anisotropy and (ii) a more isotropic center which is attributed to E^\prime defects of the \sio bulk close to the interface. Correlation measurements of the dynamics of spin--dependent recombination confirm that previously proposed transitions between \Phos and the interface defects take place. The influence of these electronic near--interface transitions on the \Phos donor spin coherence time T2T_2 as well as the donor spin--lattice relaxation time T1T_1 is then investigated by comparison of spin Hahn--echo decay measurements obtained from conventional bulk sensitive pulsed electron paramagnetic resonance and surface sensitive pEDMR, as well as surface sensitive electrically detected inversion recovery experiments. The measurements reveal that both T2T_2 and T1T_1 of \Phos donor electrons spins in proximity of energetically lower interface states at T13T\leq 13 K are reduced by several orders of magnitude

    Business process improvement with the AB-BPM methodology

    Get PDF
    A fundamental assumption of Business Process Management (BPM) is that redesign delivers refined and improved versions of business processes. This assumption, however, does not necessarily hold, and any required compensatory action may be delayed until a new round in the BPM life-cycle completes. Current approaches to process redesign face this problem in one way or another, which makes rapid process improvement a central research problem of BPM today. In this paper, we address this problem by integrating concepts from process execution with ideas from DevOps. More specifically, we develop a methodology called AB-BPM that offers process improvement validation in two phases: simulation and AB tests. Our simulation technique extracts decision probabilities and metrics from the event log of an existing process version and generates traces for the new process version based on this knowledge. The results of simulation guide us towards AB testing where two versions (A and B) are operational in parallel and any new process instance is routed to one of them. The routing decision is made at runtime on the basis of the achieved results for the registered performance metrics of each version. Our routing algorithm provides for ultimate convergence towards the best performing version, no matter if it is the old or the new version. We demonstrate the efficacy of our methodology and techniques by conducting an extensive evaluation based on both synthetic and real-life data

    Verification of the Parallel Pin-Wise Core Simulator pCTF/PARCSv3.2 in Operational Control Rod Drop Transient Scenarios

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in Nuclear Science and Engineering on 2017, available online: https://www.tandfonline.com/doi/full/10.1080/00295639.2017.1320892[EN] Thanks to advances in computer technology, it is feasible to obtain detailed reactor core descriptions for safety analysis of the light water reactor (LWR), in order to represent realistically the fuel elements design, as is the case for three-dimensional coupled simulations for local neutron kinetics and thermal hydraulics. This scenario requires an efficient thermal-hydraulic code that can produce a response in a reasonable time for large-scale, detailed models. In two-fluid codes, such as the thermal-hydraulic subchannel code COBRA-TF, the time restriction is even more important, since the set of equations to be solved is more complex. We have developed a message passing interface parallel version of COBRA-TF, called pCTF. The parallel code is based on a cell-oriented domain decomposition approach, and performs well in models that consist of many cells. The Jacobian matrix is computed in parallel, with each processor in charge of calculating the coefficients related to a subset of the cells. Furthermore, the resulting system of linear equations is also solved in parallel, by exploiting solvers and preconditioners from PETSc. The goal of this study is to demonstrate the capability of the recently developed pCTF/PARCS coupled code to simulate large cores with a pin-by-pin level of detail in an acceptable computational time, using for this purpose two control rod drop operational transients that took place in the core of a three-loop pressurized water reactor. As a result, the main safety parameters of the core hot channel have been calculated by the coupled code in a pin level of detail, obtaining best estimate results for this transient.This work has been partially supported by the Universitat Politecnica de Valencia under Projects COBRA_PAR (PAID-05-11-2810) and OpenNUC (PAID-05-12), and by the Spanish Ministerio de Economia y Competitividad under Projects SLEPc-HS (TIN2016-75985-P) and NUC-MULTPHYS (ENE2012-34585).Ramos Peinado, E.; Roman Moltó, JE.; Abarca Giménez, A.; Miró Herrero, R.; Bermejo, JA.; Ortego, A.; Posada-Barral, JM. (2017). Verification of the Parallel Pin-Wise Core Simulator pCTF/PARCSv3.2 in Operational Control Rod Drop Transient Scenarios. Nuclear Science and Engineering. 187(3):254-267. https://doi.org/10.1080/00295639.2017.1320892S2542671873Cuervo, D., Avramova, M., Ivanov, K., & Miró, R. (2006). Evaluation and enhancement of COBRA-TF efficiency for LWR calculations. Annals of Nuclear Energy, 33(9), 837-847. doi:10.1016/j.anucene.2006.03.011Ramos, E., Roman, J. E., Abarca, A., Miró, R., & Bermejo, J. A. (2016). Control rod drop transient analysis with the coupled parallel code pCTF-PARCSv2.7. Annals of Nuclear Energy, 87, 308-317. doi:10.1016/j.anucene.2015.09.016T. DOWNAR et al. “PARCS v2.7 U.S. NRC Core Neutronics Simulator: User Manual” (2006).T. DOWNAR et al. “PARCS v2.7 U.S. NRC Core Neutronics Simulator: Theory Manual” (2006)

    Oxide two-dimensional electron gas with high mobility at room-temperature

    Get PDF
    The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO(3)‐based heterostructures. Here, 2DEG formation at the LaScO(3)/BaSnO(3) (LSO/BSO) interface with a room‐temperature mobility of 60 cm(2) V(−1) s(−1) at a carrier concentration of 1.7 × 10(13) cm(–2) is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO(3)‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO(2)‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics

    Mapping the optimal route between two quantum states

    Get PDF
    A central feature of quantum mechanics is that a measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. The ability to control a quantum system in the presence of these fluctuations is of increasing importance in quantum information processing and finds application in fields ranging from nuclear magnetic resonance to chemical synthesis. A detailed understanding of this stochastic evolution is essential for the development of optimized control methods. Here we reconstruct the individual quantum trajectories of a superconducting circuit that evolves in competition between continuous weak measurement and driven unitary evolution. By tracking individual trajectories that evolve between an arbitrary choice of initial and final states we can deduce the most probable path through quantum state space. These pre- and post-selected quantum trajectories also reveal the optimal detector signal in the form of a smooth time-continuous function that connects the desired boundary conditions. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wave function collapse, and unitary evolution of the quantum state as described by the Schrodinger equation. These results and the underlying theory, based on a principle of least action, reveal the optimal route from initial to final states, and may enable new quantum control methods for state steering and information processing.Comment: 12 pages, 9 figure

    Proliferation and estrogen signaling can distinguish patients at risk for early versus late relapse among estrogen receptor positive breast cancers

    Get PDF
    Introduction: We examined if a combination of proliferation markers and estrogen receptor (ER) activity could predict early versus late relapses in ER-positive breast cancer and inform the choice and length of adjuvant endocrine therapy. Methods: Baseline affymetrix gene-expression profiles from ER-positive patients who received no systemic therapy (n = 559), adjuvant tamoxifen for 5 years (cohort-1: n = 683, cohort-2: n = 282) and from 58 patients treated with neoadjuvant letrozole for 3 months (gene-expression available at baseline, 14 and 90 days) were analyzed. A proliferation score based on the expression of mitotic kinases (MKS) and an ER-related score (ERS) adopted from Oncotype DX® were calculated. The same analysis was performed using the Genomic Grade Index as proliferation marker and the luminal gene score from the PAM50 classifier as measure of estrogen-related genes. Median values were used to define low and high marker groups and four combinations were created. Relapses were grouped into time cohorts of 0-2.5, 0-5, 5-10 years. Results: In the overall 10 years period, the proportional hazards assumption was violated for several biomarker groups indicating time-dependent effects. In tamoxifen-treated patients Low-MKS/Low-ERS cancers had continuously increasing risk of relapse that was higher after 5 years than Low-MKS/High-ERS cancers [0 to 10 year, HR 3.36; p = 0.013]. High-MKS/High-ERS cancers had low risk of early relapse [0-2.5 years HR 0.13; p = 0.0006], but high risk of late relapse which was higher than in the High-MKS/Low-ERS group [after 5 years HR 3.86; p = 0.007]. The High-MKS/Low-ERS subset had most of the early relapses [0 to 2.5 years, HR 6.53; p < 0.0001] especially in node negative tumors and showed minimal response to neoadjuvant letrozole. These findings were qualitatively confirmed in a smaller independent cohort of tamoxifen-treated patients. Using different biomarkers provided similar results. Conclusions: Early relapses are highest in highly proliferative/low-ERS cancers, in particular in node negative tumors. Relapses occurring after 5 years of adjuvant tamoxifen are highest among the highly-proliferative/high-ERS tumors although their risk of recurrence is modest in the first 5 years on tamoxifen. These tumors could be the best candidates for extended endocrine therapy

    Decoherence in rf SQUID Qubits

    Full text link
    We report measurements of coherence times of an rf SQUID qubit using pulsed microwaves and rapid flux pulses. The modified rf SQUID, described by an double-well potential, has independent, in situ, controls for the tilt and barrier height of the potential. The decay of coherent oscillations is dominated by the lifetime of the excited state and low frequency flux noise and is consistent with independent measurement of these quantities obtained by microwave spectroscopy, resonant tunneling between fluxoid wells and decay of the excited state. The oscillation's waveform is compared to analytical results obtained for finite decay rates and detuning and averaged over low frequency flux noise.Comment: 24 pages, 13 figures, submitted to the journal Quantum Information Processin

    HER2 testing in breast cancer: Opportunities and challenges

    Get PDF
    Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results
    corecore