research

T1T_1- and T2T_2-spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects

Abstract

A study of donor electron spins and spin--dependent electronic transitions involving phosphorous (31^{31}P) atoms in proximity of the (111) oriented crystalline silicon (c-Si) to silicon dioxide (SiO2_{2}) interface is presented for [31^{31}P] = 1015^{15} cm3\mathrm{cm}^{-3} and [31^{31}P] = 1016^{16} cm3\mathrm{cm}^{-3} at about liquid 4^4He temperatures (T=5T = 5 K15\mathrm{K} - 15 K\mathrm{K}). Using pulsed electrically detected magnetic resonance (pEDMR), spin--dependent transitions between the \Phos donor state and two distinguishable interface states are observed, namely (i) \Pb centers which can be identified by their characteristic anisotropy and (ii) a more isotropic center which is attributed to E^\prime defects of the \sio bulk close to the interface. Correlation measurements of the dynamics of spin--dependent recombination confirm that previously proposed transitions between \Phos and the interface defects take place. The influence of these electronic near--interface transitions on the \Phos donor spin coherence time T2T_2 as well as the donor spin--lattice relaxation time T1T_1 is then investigated by comparison of spin Hahn--echo decay measurements obtained from conventional bulk sensitive pulsed electron paramagnetic resonance and surface sensitive pEDMR, as well as surface sensitive electrically detected inversion recovery experiments. The measurements reveal that both T2T_2 and T1T_1 of \Phos donor electrons spins in proximity of energetically lower interface states at T13T\leq 13 K are reduced by several orders of magnitude

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020