1,008 research outputs found

    A Human Islet Cell-Culture System for High-Throuput screening.

    Get PDF
    A small-molecule inducer of beta-cell proliferation in human islets represents a potential regeneration strategy for treating type 1 diabetes. However, the lack of suitable human beta cell lines makes such a discovery a challenge. Here, we adapted an islet cell culture system to high-throughput screening to identify such small molecules. We prepared microtiter plates containing extracellular matrix from a human bladder carcinoma cell line. Dissociated human islets were seeded onto these plates, cultured for up to 7 days, and assessed for proliferation by simultaneous Ki67 and C-peptide immunofluorescence. Importantly, this environment preserved beta-cell physiological function, as measured by glucose-stimulated insulin secretion. Adenoviral overexpression of cdk-6 and cyclin D(1), known inducers of human beta cell proliferation, was used as a positive control in our assay. This induction was inhibited by cotreatment with rapamycin, an immunosuppressant often used in islet transplantation. We then performed a pilot screen of 1280 compounds, observing some phenotypic effects on cells. This high-throughput human islet cell culture method can be used to assess various aspects of beta-cell biology on a relatively large number of compounds

    Consistent dynamical and stellar masses with potential light IMF in massive quiescent galaxies at 3<z<43 < z < 4 using velocity dispersions measurements with MOSFIRE

    Full text link
    We present the velocity dispersion measurements of four massive ∼1011M⊙\sim10^{11}M_\odot quiescent galaxies at 3.2<z<3.73.2 < z < 3.7 based on deep H and K−-band spectra using the Keck/MOSFIRE near-infrared spectrograph. We find high velocity dispersions of order σe∼250\sigma_e\sim250 km/s based on strong Balmer absorption lines and combine these with size measurements based on HST/WFC3 F160W imaging to infer dynamical masses. The velocity dispersion are broadly consistent with the high stellar masses and small sizes. Together with evidence for quiescent stellar populations, the spectra confirm the existence of a population of massive galaxies that formed rapidly and quenched in the early universe z>4z>4. Investigating the evolution at constant velocity dispersion between z∼3.5z\sim3.5 and z∼2z\sim2, we find a large increase in effective radius 0.35±0.120.35\pm0.12 dex and in dynamical-to-stellar mass ratio of 0.33$\pm0.08$ dex, with low expected contribution from dark matter. The dynamical masses for our $z\sim3.5$ sample are consistent with the stellar masses for a Chabrier initial mass function (IMF), with the ratio = -0.13±\pm0.10 dex suggesting an IMF lighter than Salpeter may be common for massive quiescent galaxies at z>3z>3. This is surprising in light of the Salpeter or heavier IMFs found for high velocity dispersion galaxies at z∼2z\sim2 and cores of present-day ellipticals, which these galaxies are thought to evolve into. Future imaging and spectroscopic observations with resolved kinematics using the upcoming James Webb Space Telescope could rule out potential systematics from rotation, and confirm these results.Comment: 11 pages, 3 figures. Accepted to ApJ Letter

    High star formation rates as the origin of turbulence in early and modern disk galaxies

    Full text link
    High spatial and spectral resolution observations of star formation and kinematics in early galaxies have shown that two-thirds are massive rotating disk galaxies with the remainder being less massive non-rotating objects. The line of sight averaged velocity dispersions are typically five times higher than in today's disk galaxies. This has suggested that gravitationally-unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. However these accreting flows have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report on a new sample of rare high-velocity-dispersion disk galaxies we have discovered in the nearby Universe where cold accretion is unlikely to drive their high star-formation rates. We find that the velocity dispersion is most fundamentally correlated with their star-formation rates, and not their mass nor gas fraction, which leads to a new picture where star formation itself is the energetic driver of galaxy disk turbulence at all cosmic epochs.Comment: 9 pages, 2 figures, Supplimentary Info available at: http://pulsar.swin.edu.au/~agreen/nature/sigma_mean_arXiv.pdf. Accepted for publication in Natur

    Harmonic Allocation of Authorship Credit: Source-Level Correction of Bibliometric Bias Assures Accurate Publication and Citation Analysis

    Get PDF
    Authorship credit for multi-authored scientific publications is routinely allocated either by issuing full publication credit repeatedly to all coauthors, or by dividing one credit equally among all coauthors. The ensuing inflationary and equalizing biases distort derived bibliometric measures of merit by systematically benefiting secondary authors at the expense of primary authors. Here I show how harmonic counting, which allocates credit according to authorship rank and the number of coauthors, provides simultaneous source-level correction for both biases as well as accommodating further decoding of byline information. I also demonstrate large and erratic effects of counting bias on the original h-index, and show how the harmonic version of the h-index provides unbiased bibliometric ranking of scientific merit while retaining the original's essential simplicity, transparency and intended fairness. Harmonic decoding of byline information resolves the conundrum of authorship credit allocation by providing a simple recipe for source-level correction of inflationary and equalizing bias. Harmonic counting could also offer unrivalled accuracy in automated assessments of scientific productivity, impact and achievement

    Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator

    No full text
    We show that the properties of the electron beam and bright X-rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model based on oscillations of the beam inside a plasma bubble shows that performance is optimised when the plasma length is matched to the laser depletion length. With a 200~TW laser pulse this results in an X-ray beam with median photon energy of 20 keV, >109> 10^{9} photons per shot and a peak brightness of 4×10234 \times 10^{23} photons s−1^{-1} mrad−2^{-2} mm−2^{-2} (0.1 % BW)−1^{-1}

    Small-molecule targeting of brachyury transcription factor addiction in chordoma.

    Get PDF
    Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers

    Unique and conserved MicroRNAs in wheat chromosome 5D revealed by next-generation sequencing

    Get PDF
    MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    Alternative Stable States Generated by Ontogenetic Niche Shift in the Presence of Multiple Resource Use

    Get PDF
    It has been suggested that when juveniles and adults use different resources or habitats, alternative stable states (ASS) may exist in systems coupled by an ontogenetic niche shift. However, mainly the simplest system, i.e., the one-consumer–two-resource system, has been studied previously, and little is known about the development of ASS existing in more complex systems. Here, I theoretically investigated the development of ASS caused by an ontogenetic niche shift in the presence of multiple resource use. I considered three independent scenarios; (i) additional resources, (ii) multiple habitats, and (iii) interstage resource sharing. The model analyses illustrate that relative balance between the total resource availability in the juvenile and adult habitats is crucial for the development of ASS. This balance is determined by factors such as local habitat productivity, subsidy inputs, colonization area, and foraging mobility. Furthermore, it is also shown that interstage resource sharing generally suppresses ASS. These results suggest that the anthropogenic impacts of habitat modifications (e.g., fragmentation and destruction) or interaction modifications (e.g., changes in ontogeny and foraging behavior) propagate through space and may cause or prevent regime shifts in the regional community structure

    Emerging interdependence between stock values during financial crashes

    Get PDF
    To identify emerging interdependencies between traded stocks we investigate the behavior of the stocks of FTSE 100 companies in the period 2000-2015, by looking at daily stock values. Exploiting the power of information theoretical measures to extract direct influences between multiple time series, we compute the information flow across stock values to identify several different regimes. While small information flows is detected in most of the period, a dramatically different situation occurs in the proximity of global financial crises, where stock values exhibit strong and substantial interdependence for a prolonged period. This behavior is consistent with what one would generally expect from a complex system near criticality in physical systems, showing the long lasting effects of crashes on stock markets
    • …
    corecore