40 research outputs found

    A Possible Role for Metallic Ions in the Carbohydrate Cluster Recognition Displayed by a Lewis Y Specific Antibody

    Get PDF
    BACKGROUND:Lewis Y (Le(y)) is a blood group-related carbohydrate that is expressed at high surface densities on the majority of epithelial carcinomas and is a promising target for antibody-based immunotherapy. A humanized Le(y)-specific antibody (hu3S193) has shown encouraging safety, pharmacokinetic and tumor-targeting properties in recently completed Phase I clinical trials. METHODOLOGY/PRINCIPAL FINDINGS:We report the three-dimensional structures for both the free (unliganded) and bound (Le(y) tetrasaccharide) hu3S193 Fab from the same crystal grown in the presence of divalent zinc ions. There is no evidence of significant conformational changes occurring in either the Le(y) carbohydrate antigen or the hu3S193 binding site, which suggests a rigid fit binding mechanism. In the crystal, the hu3S193 Fab molecules are coordinated at their protein-protein interface by two zinc ions and in solution aggregation of Fab can be initiated by zinc, but not magnesium ions. Dynamic light scattering revealed that zinc ions could initiate a sharp transition from hu3S193 Fab monomers to large multimeric aggregates in solution. CONCLUSIONS/SIGNIFICANCE:Zinc ions can mediate interactions between hu3S193 Fab in crystals and in solution. Whether metallic ion mediated aggregation of antibody occurs in vivo is not known, but the present results suggest that similar clustering mechanisms could occur when hu3S193 binds to Le(y) on cells, particularly given the high surface densities of antigen on the target tumor cells

    Antibody Recognition of Cancer-Related Gangliosides and Their Mimics Investigated Using in silico Site Mapping

    Get PDF
    Modified gangliosides may be overexpressed in certain types of cancer, thus, they are considered a valuable target in cancer immunotherapy. Structural knowledge of their interaction with antibodies is currently limited, due to the large size and high flexibility of these ligands. In this study, we apply our previously developed site mapping technique to investigate the recognition of cancer-related gangliosides by anti-ganglioside antibodies. The results reveal a potential ganglioside-binding motif in the four antibodies studied, suggesting the possibility of structural convergence in the anti-ganglioside immune response. The structural basis of the recognition of ganglioside-mimetic peptides is also investigated using site mapping and compared to ganglioside recognition. The peptides are shown to act as structural mimics of gangliosides by interacting with many of the same binding site residues as the cognate carbohydrate epitopes. These studies provide important clues as to the structural basis of immunological mimicry of carbohydrates

    GPVI and GPIbα Mediate Staphylococcal Superantigen-Like Protein 5 (SSL5) Induced Platelet Activation and Direct toward Glycans as Potential Inhibitors

    Get PDF
    Background Staphylococcus aureus (S. aureus) is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5) has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects. Methodology/Principal Findings In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro. Conclusions/Significance These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in viv

    Metabolite profiling reveals new insights into the regulation of serum urate in humans

    Get PDF
    Albrecht E, Waldenberger M, Krumsiek J, et al. Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics. 2013;10(1):141-151.Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia

    Variable region gene expression and structural motifs of human polyreactive immunoglobulins

    Full text link
    University of Technology, Sydney. Faculty of Science.Polyreactive immunoglobulins (Ig) exhibit a capacity to recognise multiple, structurally dissimilar antigens through a single combining site. This characteristic differentiates these Igs from monoreactive Igs which bind to a single antigen, usually with high specificity and affinity. Chronic B lymphocytic leukaemia (B CLL) is a malignancy identified by the incessant accumulation, in the peripheral circulation, of B lymphocytes of a mature and resting morphology. B CLL malignant cells generally express both surface IgM and the pan T cell antigen CD5. Moreover, the IgM on the surface of these CD5 positive B CLL cells is frequently polyreactive. This thesis examines the structural diversity found in the combining sites of B CLL derived Igs in an attempt to elucidate the structural basis of polyreactive antigen binding displayed by a significant proportion of human Igs. The genes encoding the variable (V) domains of five B CLL derived IgM antibodies (Bel, Tre, Yar, Hod and Jak) were cloned and sequenced (Chapter Two). When the light chain V domain genes were aligned with the closest germline VL and JL coding DNA sequences it was determined that there was either a complete absence of somatic mutation (Tre, Yar and Jak) or a minimal number of mutations (Bel and Hod) present in the rearranged VL domain genes. A remarkable fidelity in the splicing of VL to JL genes was noted suggesting that the diversity, normally introduced through variability of splicing VL to JL, is reduced in Igs expressed by B CLL cells. Furthermore, the markedly reduced primary structural diversity was highlighted when two of the VL domain genes (Yar and Hod) were found to be different in sequence by only four nucleotides and two amino acids. The heavy chain V domain genes of the same five Igs were sequenced in another study (Brock, 1995), however, it was interesting to analyse the sequences of the VH domain genes and compare them with the VL domain genes. The naive or gerrnline nature of the B CLL antibodies was reflected in the VH genes by either an absence or a low frequency of mutations within these sequences compared with germline immunoglobulin gene sequences. No obvious conserved motif, which could be related to polyreactivity, was observed when the primary protein sequence was analysed for distribution of identical or similar amino acids. Thus, homology modelling was used to construct three-dimensional models of the Fv (VL-VH) portions of the five B CLL IgM molecules to examine the structures of the combining sites of these Igs (Chapter Three). Framework regions were constructed using X-ray coordinates taken from highly hon~ologous human variable domain structures. Complementarity determining regions (CDR) were predicted by grafting loops, taken from known Ig structures, onto the Fv framework models. The CDR templates were selected, where possible, to be of the same length and of high residue identity or similarity. If a single template CDR was not appropriate to model a particular CDR the loop was built from loop sterns of known conformation, followed by chain closure with a p-turn. Template models were refined using standard molecular mechanics simulations. The binding sites were either relatively flat or contained a deep cavity at the VL-VH domain interface. Further differences in topology were the result of some CDR loops protruding into the solvent. Examination of the electrostatic molecular surface did not reveal a common structural feature within the binding sites of the five polyreactive Fv. While two of the binding cavities were positively charged the other three structures displayed either negatively charged or predominantly hydrophobic combining sites. These findings suggested that a diversity of structural mechanisms are involved in polyreactive antigen binding. Rcsidues within CDRs which have aromatic side-chains and are partially exposed to solvent were distributed across large regions of the combining sites. It is possible that these aromatic residues are responsible for the conserved binding to mouse Igs observed (Chapter Two) for the B CLL derived polyreactive IgM molecules. Two Fv molecules (Be1 and Tre) were cloned as dicistronic constructs, into the bacterial expression vector pFLAG. The expression of the Fvs was fully characterised and unfortunately the VL and VH of Be1 and Tre Igs did not associate in an appropriate manner to yield large quantities of purified Fv (Chapter Four). Expression of correctly folded and stabilised fragments of human polyreactive immunoglobulins would enable the structural basis for the polyreactive binding phenomenon to be fully explored using protein crystallography

    BioStructMap: a Python tool for integration of protein structure and sequence-based features

    Get PDF
    Summary: A sliding window analysis over a protein or genomic sequence is commonly performed, and we present a Python tool, BioStructMap, that extends this concept to three-dimensional (3D) space, allowing the application of a 3D sliding window analysis over a protein structure. BioStructMap is easily extensible, allowing the user to apply custom functions to spatially aggregated data. BioStructMap also allows mapping of underlying genomic sequences to protein structures, allowing the user to perform genetic-based analysis over spatially linked codons-this has applications when selection pressures arise at the level of protein structure. Availability and implementation: The Python BioStructMap package is available at https://github.com/andrewguy/biostructmap and released under the MIT License. An online server implementing standard functionality is available at https://biostructmap.burnet.edu.au. Supplementary information: Supplementary data are available at Bioinformatics online

    Identifying glycan motifs using a novel subtree mining approach

    Get PDF
    BACKGROUND: Glycans are complex sugar chains, crucial to many biological processes. By participating in binding interactions with proteins, glycans often play key roles in host-pathogen interactions. The specificities of glycan-binding proteins, such as lectins and antibodies, are governed by motifs within larger glycan structures, and improved characterisations of these determinants would aid research into human diseases. Identification of motifs has previously been approached as a frequent subtree mining problem, and we extend these approaches with a glycan notation that allows recognition of terminal motifs. RESULTS: In this work, we customised a frequent subtree mining approach by altering the glycan notation to include information on terminal connections. This allows specific identification of terminal residues as potential motifs, better capturing the complexity of glycan-binding interactions. We achieved this by including additional nodes in a graph representation of the glycan structure to indicate the presence or absence of a linkage at particular backbone carbon positions. Combining this frequent subtree mining approach with a state-of-the-art feature selection algorithm termed minimum-redundancy, maximum-relevance (mRMR), we have generated a classification pipeline that is trained on data from a glycan microarray. When applied to a set of commonly used lectins, the identified motifs were consistent with known binding determinants. Furthermore, logistic regression classifiers trained using these motifs performed well across most lectins examined, with a median AUC value of 0.89. CONCLUSIONS: We present here a new subtree mining approach for the classification of glycan binding and identification of potential binding motifs. The Carbohydrate Classification Accounting for Restricted Linkages (CCARL) method will assist in the interpretation of glycan microarray experiments and will aid in the discovery of novel binding motifs for further experimental characterisation

    The membrane effects of melittin on gastric and colorectal cancer

    Get PDF
    The cytotoxic effects of melittin, a bee-venom peptide, have been widely studied towards cancer cells. Typically, these studies have examined the effect of melittin over extended-time courses (6-24 hours), meaning that immediate cellular interactions have been overlooked. In this work, we demonstrate the rapid effects of melittin on both gastric and colorectal cancer, specifically AGS, COLO205 and HCT-15 cell lines, over a period of 15 minutes. Melittin exhibited a dose dependent effect at 4 hours of treatment, with complete cellular death occurring at the highest dose of 20 μg/mL. Interestingly, when observed at shorter time points, melittin induced cellular changes within seconds; membrane damage was observed as swelling, breakage or blebbing. High-resolution imaging revealed treated cells to be compromised, showing clear change in cellular morphology. After 1 minute of melittin treatment, membrane changes were observed, and intracellular material could be seen expelled from the cells. Overall, these results enhance our understanding of the fast acting anti-cancer effects of melittin
    corecore