848 research outputs found
Behaviourally Mediated Phenotypic Selection in a Disturbed Coral Reef Environment
Natural and anthropogenic disturbances are leading to changes in the nature of many habitats globally, and the magnitude and frequency of these perturbations are predicted to increase under climate change. Globally coral reefs are one of the most vulnerable ecosystems to climate change. Fishes often show relatively rapid declines in abundance when corals become stressed and die, but the processes responsible are largely unknown. This study explored the mechanism by which coral bleaching may influence the levels and selective nature of mortality on a juvenile damselfish, Pomacentrus amboinensis, which associates with hard coral. Recently settled fish had a low propensity to migrate small distances (40 cm) between habitat patches, even when densities were elevated to their natural maximum. Intraspecific interactions and space use differ among three habitats: live hard coral, bleached coral and dead algal-covered coral. Large fish pushed smaller fish further from the shelter of bleached and dead coral thereby exposing smaller fish to higher mortality than experienced on healthy coral. Small recruits suffered higher mortality than large recruits on bleached and dead coral. Mortality was not size selective on live coral. Survival was 3 times as high on live coral as on either bleached or dead coral. Subtle behavioural interactions between fish and their habitats influence the fundamental link between life history stages, the distribution of phenotypic traits in the local population and potentially the evolution of life history strategies
Genomics of Divergence along a Continuum of Parapatric Population Differentiation
MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1)
Splenic artery embolization in a woman with bleeding gastric varices and splenic vein thrombosis: a case report
<p>Abstract</p> <p>Introduction</p> <p>Gastric variceal bleeding due to splenic vein thrombosis is a life-threatening situation and is often difficult to manage by endoscopy. In the worst cases, an emergency splenectomy may be required to stop variceal bleeding.</p> <p>Case presentation</p> <p>We report the case of a 60-year-old Caucasian woman with bleeding gastric varices secondary to splenic vein thrombosis treated by splenic artery embolization. Successful embolization was performed by depositing coils into the splenic artery resulting in cessation of variceal bleeding. After embolization there was no recurrence of bleeding.</p> <p>Conclusion</p> <p>Splenic artery embolization can be an effective and definite treatment for variceal bleeding secondary to splenic vein thrombosis.</p
Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells
In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al
Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3− and 2CO32−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size
Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.
Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance
Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon
We have measured the parity-violating electroweak asymmetry in the elastic
scattering of polarized electrons from ^4He at an average scattering angle
= 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From
these data, for the first time, the strange electric form factor of the nucleon
G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat)
+/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042
(stat) +/- 0.010 (syst), consistent with zero
Severe airway stenosis associated with Crohn's disease: Case report
BACKGROUND: Symptomatic respiratory tract involvement is not common in Crohn's disease. Upper-airway obstruction has been reported before in Crohn's disease and usually responds well to steroid treatment. CASE PRESENTATION: We report a case of a 32-year old patient with Crohn's disease who presented with progressively worsening dyspnea on exertion. Magnetic Resonance Imaging of the chest and bronchoscopy revealed severe tracheal stenosis and marked inflammation of tracheal mucosa. Histopathology of the lesion showed acute and chronic inflammation and extended ulceration of bronchial mucosa, without granulomas. Tracheal stenosis was attributed to Crohn's disease after exclusion of other possible causes and oral and inhaled steroids were administered. Despite steroid treatment, tracheal stenosis persisted and only mild symptomatic improvement was noted after 8 months of therapy. The patient subsequently underwent rigid bronchoscopy with successful dilatation and ablation of the stenosed areas and remission of her symptoms. CONCLUSION: Respiratory involvement in Crohn's disease might be more common than appreciated. Interventional pulmonology techniques should be considered in cases of tracheal stenosis due to Crohn's disease refractory to steroid treatment
Is Cortisol Excretion Independent of Menstrual Cycle Day? A Longitudinal Evaluation of First Morning Urinary Specimens
Background
Cortisol is frequently used as a marker of physiologic stress levels. Using cortisol for that purpose, however, requires a thorough understanding of its normal longitudinal variability. The current understanding of longitudinal variability of basal cortisol secretion in women is very limited. It is often assumed, for example, that basal cortisol profiles do not vary across the menstrual cycle. This is a critical assumption: if cortisol were to follow a time dependent pattern during the menstrual cycle, then ignoring this cyclic variation could lead to erroneous imputation of physiologic stress. Yet, the assumption that basal cortisol levels are stable across the menstrual cycle rests on partial and contradictory evidence. Here we conduct a thorough test of that assumption using data collected for up to a year from 25 women living in rural Guatemala.
Methodology
We apply a linear mixed model to describe longitudinal first morning urinary cortisol profiles, accounting for differences in both mean and standard deviation of cortisol among women. To that aim we evaluate the fit of two alternative models. The first model assumes that cortisol does not vary with menstrual cycle day. The second assumes that cortisol mean varies across the menstrual cycle. Menstrual cycles are aligned on ovulation day (day 0). Follicular days are assigned negative numbers and luteal days positive numbers. When we compared Models 1 and 2 restricting our analysis to days between −14 (follicular) and day 14 (luteal) then day of the menstrual cycle did not emerge as a predictor of urinary cortisol levels (p-value >0.05). Yet, when we extended our analyses beyond that central 28-day-period then day of the menstrual cycle become a statistically significant predictor of cortisol levels.
Significance
The observed trend suggests that studies including cycling women should account for day dependent variation in cortisol in cycles with long follicular and luteal phases
- …