18 research outputs found

    In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography

    Get PDF
    Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation

    CBF changes during brain activation: fMRI vs. PET

    No full text
    The changes in regional cerebral blood flow (rCBF) associated with the changes in neuronal activity are routinely measured both by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) techniques. However, direct comparison has not been performed to determine similarities and differences of PET and fMRI techniques in determining the rCBF response to brain activation. In the present study, a quantitative comparison of the functional rCBF maps obtained by PET and fMRI are made by performing an activation study in a single group of subjects under precisely controlled conditions and using identical visual stimuli. Twelve healthy volunteers participated in the activation study using the visual checkerboard stimulation with flip frequency at 8 Hz. By selecting the conjunctive pixels which activated on both PET and fMRI maps, the change in rCBF measured by fMRI was 36.95 ± 2.54%, whereas the value measured by PET was 38.79 ± 2.63%. Our results have demonstrated that there is no statistically significant difference (P = 0.22) in the measurements of rCBF change between MRI and PET methods. © 2004 Elsevier Inc. All rights reserved.link_to_subscribed_fulltex

    Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase

    Get PDF
    Glycosidases are phylogenetically widely distributed enzymes that are crucial for the cleavage of glycosidic bonds. Here, we present the exceptional properties of a putative ancestor of bacterial and eukaryotic family-1 glycosidases. The ancestral protein shares the TIM-barrel fold with its modern descendants but displays large regions with greatly enhanced conformational flexibility. Yet, the barrel core remains comparatively rigid and the ancestral glycosidase activity is stable, with an optimum temperature within the experimental range for thermophilic family-1 glycosidases. None of the ∼5500 reported crystallographic structures of ∼1400 modern glycosidases show a bound porphyrin. Remarkably, the ancestral glycosidase binds heme tightly and stoichiometrically at a well-defined buried site. Heme binding rigidifies this TIM-barrel and allosterically enhances catalysis. Our work demonstrates the capability of ancestral protein reconstructions to reveal valuable but unexpected biomolecular features when sampling distant sequence space. The potential of the ancestral glycosidase as a scaffold for custom catalysis and biosensor engineering is discussed.Uppsala Universit

    Quantitation of DNA-binding affinity using Tethered Particle Motion

    No full text
    The binding constant is an important characteristic of a DNA-binding protein. A large number of methods exist to measure the binding constant, but many of those methods have intrinsic flaws that influence the outcome of the characterization. Tethered Particle Motion (TPM) is a simple, cheap, and high-throughput single-molecule method that can be used to reliably measure binding constants of proteins binding to DNA, provided that they distort DNA. In TPM, the motion of a bead tethered to a surface by DNA is tracked using light microscopy. A protein binding to the DNA will alter bead motion. This makes it possible to measure binding properties. We use the bacterial protein Integration Host Factor (IHF) as an example to show how specific binding to DNA can be measured. Moreover, we show a new intuitive quantitative approach to displaying data obtained via TPM.Macromolecular Biochemistr
    corecore