91 research outputs found

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Advantages and Limitations of Commercially Available Electrocuting Grids for Studying Mosquito Behaviour.

    Get PDF
    Mosquito feeding behaviour plays a major role in determining malaria transmission intensity and the impact of specific prevention measures. Human Landing Catch (HLC) is currently the only method that can directly and consistently measure the biting rates of anthropophagic mosquitoes, both indoors and outdoors. However, this method exposes the participant to mosquito-borne pathogens, therefore new exposure-free methods are needed to replace it. Commercially available electrocuting grids (EGs) were evaluated as an alternative to HLC using a Latin Square experimental design in Dar es Salaam, Tanzania. Both HLC and EGs were used to estimate the proportion of human exposure to mosquitoes occurring indoors (πi), as well as its two underlying parameters: the proportion of mosquitoes caught indoors (Pi) and the proportion of mosquitoes caught between the first and last hour when most people are indoors (Pfl). HLC and EGs methods accounted for 69% and 31% of the total number of female mosquitoes caught respectively and both methods caught more mosquitoes outdoors than indoors. Results from the gold standard HLC suggest that An. gambiae s.s. in Dar es Salaam is neither exophagic nor endophagic (Pi ≈ 0.5), whereas An. arabiensis is exophagic (Pi < < 0.5). Both species prefer to feed after 10 pm when most people are indoors (Pfl > >0.5). EGs yielded estimates of Pi for An. gambiae s.s., An. arabiensis and An. coustani, that were approximately equivalent to those with HLC but significantly underestimated Pfl for An. gambiae s.s. and An. coustani. The relative sampling sensitivity of EGs declined over the course of the night (p ≤ 0.001) for all mosquito taxa except An. arabiensis. Commercial EGs sample human-seeking mosquitoes with high sensitivity both indoors and outdoors and accurately measure the propensity of Anopheles malaria vectors to bite indoors rather than outdoors. However, further modifications are needed to stabilize sampling sensitivity over a full nocturnal cycle so that they can be used to survey patterns of human exposure to mosquitoes

    Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.

    Get PDF
    The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures

    Modelling the implications of stopping vector control for malaria control and elimination

    Get PDF
    Increasing coverage of malaria vector control interventions globally has led to significant reductions in disease burden. However due to its high recurrent cost, there is a need to determine if and when vector control can be safely scaled back after transmission has been reduced.; A mathematical model of Plasmodium falciparum malaria epidemiology was simulated to determine the impact of scaling back vector control on transmission and disease. A regression analysis of simulation results was conducted to derive predicted probabilities of resurgence, severity of resurgence and time to resurgence under various settings. Results indicate that, in the absence of secular changes in transmission, there are few scenarios where vector control can be removed without high expectation of resurgence. These, potentially safe, scenarios are characterized by low historic entomological inoculation rates, successful vector control programmes that achieve elimination or near elimination, and effective surveillance systems with high coverage and effective treatment of malaria cases.; Programmes and funding agencies considering scaling back or withdrawing vector control from previously malaria endemic areas need to first carefully consider current receptivity and other available interventions in a risk assessment. Surveillance for resurgence needs to be continuously conducted over a long period of time in order to ensure a rapid response should vector control be withdrawn

    Seasonality of Plasmodium falciparum transmission: a systematic review

    Get PDF
    This article is fully open access and the published version is available free of charge from the jounal website.http://www.malariajournal.com/content/14/1/343Background Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has “strongly seasonal” transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized. Methods The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts. Results and discussion 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both). Discussion Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location. Conclusions The contradicting results of studies using similar data and modelling approaches from similar locations as well as the confounding nature of climatological covariates underlines the importance of a multi-faceted modelling approach that attempts to capture seasonal patterns at both small and large spatial scales. Keywords: Plasmodium falciparum ; Seasonality; Climatic driversAcknowledgements This work was supported by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directory, Department of Homeland Security, and Fogarty International Center, National Institutes of Health. DLS is funded by a grant from the Bill & Melinda Gates Foundation (OPP1110495), which also supports RCR. PMA is grateful to the University of Utrecht for supporting him with The Belle van Zuylen Chair. PWG is a Career Development Fellow (K00669X) jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement and receives support from the Bill and Melinda Gates Foundation (OPP1068048, OPP1106023)

    Made-to-Measure Malaria Vector Control Strategies: Rational Design Based on Insecticide Properties and Coverage of Blood Resources for Mosquitoes.

    Get PDF
    Eliminating malaria from highly endemic settings will require unprecedented levels of vector control. To suppress mosquito populations, vector control products targeting their blood hosts must attain high biological coverage of all available sources, rather than merely high demographic coverage of a targeted resource subset, such as humans while asleep indoors. Beyond defining biological coverage in a measurable way, the proportion of blood meals obtained from humans and the proportion of bites upon unprotected humans occurring indoors also suggest optimal target product profiles for delivering insecticides to humans or livestock. For vectors that feed only occasionally upon humans, preferred animal hosts may be optimal targets for mosquito-toxic insecticides, and vapour-phase insecticides optimized to maximize repellency, rather than toxicity, may be ideal for directly protecting people against indoor and outdoor exposure. However, for vectors that primarily feed upon people, repellent vapour-phase insecticides may be inferior to toxic ones and may undermine the impact of contact insecticides applied to human sleeping spaces, houses or clothing if combined in the same time and place. These concepts are also applicable to other mosquito-borne anthroponoses so that diverse target species could be simultaneously controlled with integrated vector management programmes. Measurements of these two crucial mosquito behavioural parameters should now be integrated into programmatically funded, longitudinal, national-scale entomological monitoring systems to inform selection of available technologies and investment in developing new ones
    corecore