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Abstract

Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the
role and drivers of malaria seasonality are unclear. Given the massive variation in the
landscape upon which transmission acts, intra-annual fluctuations are likely influenced by
different factors in different settings. Further, the presence of potentially substantial inter-
annual variation can mask the seasonal patterns; it may be that a location has “strongly
seasonal” transmission and yet no single season ever matches the mean, or synoptic, curve.
Accurate accounting of the extrinsic factors of malaria transmission for a given location can
inform efficient control and treatment strategies. In spite of the demonstrable importance
of accurately capturing the seasonality of malaria, as well as the strength of the seasonal
pattern, data required to describe these patterns is not universally accessible and as such
localized and regional efforts at quantifying malaria seasonality are disjointed and not easily
generalized. The purpose of this review is to audit the extant literature on seasonality of P.
falciparum and quantitatively summarize the collective findings. The contradicting results
of studies using similar but not identical data and modeling approaches from similar but not
identical locations as well as the confounding nature of climatological covariates underlines
the importance of a multi-faceted modeling approach that attempts to capture seasonal
patterns at both small and large spatial scales - 215 words (needs to be 200).
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1 Introduction1

Like many infectious diseases, malaria incidence often displays seasonal variation. The nature2

and extent of the seasonality varies enormously from place-to-place and from year-to-year. Tem-3

poral variation in malaria transmission is, along with its spatial distribution, among the most4

basic aspects of its epidemiology. Knowledge of the main drivers of seasonality, their timing,5

and interaction with malaria transmission in a given location can facilitate effective planning6

and implementation of routine control and treatment activities. Some interventions can be more7

effective if deployed at seasonally optimal times. Seasonal malaria chemoprevention, for ex-8

ample, which involves the preventative administration of antimalarial drugs to young children9

[Organization, 2013], is optimally targeted at regions with a short, intense, malaria transmission10

season, and requires accurate timing within that season [Cairns et al., 2012]. An understanding11

of seasonality is also important when measuring and describing geographical patterns of malaria12

risk [Gething et al., 2011]: observations made at different months in the year are difficult to13

compare without reference to a known underlying seasonal signal. Similarly, seasonality affects14

interpretation between different types of malaria data: the overall and age-specific relationships15

between vector population density, the entomological inoculation rate (EIR), the force of in-16

fection, infection prevalence or parasite rate (PR), disease incidence and mortality all differ in17

non-linear ways in areas of differing seasonality [Carneiro et al., 2010, Roca-Feltrer et al., 2010].18

19

Despite the clear importance of quantifying the seasonality of malaria, data describing it20

are not widely available. While those involved in day-to-day disease control and treatment may21

harbor detailed knowledge of local seasonal patterns, there remains no single resource provid-22

ing consistent and comparable data on the extent, timing, and determinants of seasonality at23

regional to global scales. The first challenge is one of definition. In a malaria context, the term24

seasonality encapsulates a complex and multi-faceted phenomenon which remains inconsistently25
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defined, described, and interpreted. A basic description of seasonality in a location would in-26

clude the relative magnitude, timing of onset, and duration of different seasons. These attributes27

must be characterized separately for each malaria metric of interest. Crucially, characterization28

of the “typical” seasonal pattern is likely to differ from that observed in any single year, since29

inter-annual variation is often substantial. Malaria seasons often start earlier or end later, last30

for a longer or shorter duration, or are more or less pronounced from one year to the next, and31

so this year-to-year variation around an average pattern must be captured and described.32

33

A second challenge, leading directly from the first, is the availability of standardized and34

geolocated data describing patterns of seasonality that can be compared across a wide set of35

locations. While there is a degree of consensus on the broad global patterns of seasonality, this36

falls considerably short of a geographically detailed, quantitatively rich characterization that37

could support in-depth control planning. Our understanding of the geographical distribution38

of malaria has benefited enormously from the proliferation of standardized [Hou, 2013], often39

nationally representative [DHS, , MIS, ] cross-sectional parasite rate surveys, and their assimi-40

lation into geospatial models [Gething et al., 2011, Gething et al., 2012], but such data are not41

well suited to capturing seasonal variation. Conversely, longitudinal or other time-series data42

that are ideal for analysing temporal patterns are less commonly obtained, address a disparate43

set of malaria metrics, tend to be unevenly distributed geographically [Gething et al., 2014] and44

can be prone to biases and missing data [Rowe et al., 2009].45

46

This scarcity of robust and comparable data means the empirical evidence base on patterns47

of seasonality remains unconsolidated. The purpose of this review is to audit the extant litera-48

ture on seasonality of Plasmodium falciparum, and to provide a quantitative summary in terms49

of: (i) the geographical regions represented; (ii) the type of malaria metrics measured; (iii) the50

climatic drivers identified; and (iv) the analytical approach taken to explore seasonal dynamics,51
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which include a broad class of both statistical and mechanistic modeling approaches.52

53

2 Methods54

2.1 Constructing a Systematic Bibliographic Database55

The intended scope of this review was all studies in the scientific literature that have either56

explicitly or implicitly observed, described, or modeled malaria seasonality and its drivers. Hun-57

dreds of such studies exist from sites around the world, fostered in part by the increasing diversity58

and availability of environmental and climatic covariates arising from both satellite imagery and59

improved on-the-ground data collection techniques. Six search terms were selected to system-60

atically compile a list of papers relevant to the seasonality of P. falciparumtransmission. These61

terms were then entered into the academic search engine Web of Knowledge [WoK, ] and new62

papers from each search term added to the list each time (Table 1). These search terms were63

deliberately broader than the scope of this review to capture as many potentially relevant papers64

as possible, with the large set of returned studies then successively screened for inclusion accord-65

ing to a set of criteria described below.First, the abstract and titles of each paper were checked66

to identify papers with a focal subject that was not malaria seasonality. These papers were re-67

moved from consideration at this stage (471 papers). To systematically quantify the remaining68

broad assembly of literature, we designed and implemented a classification questionnaire that69

we applied to every publication. The ’questionnaire’ was structured as follows:70

71

i) Does the paper try to understand malaria seasonality or produce a model of the relationship72

between malaria and environmental variables?73

ii) Does the paper include environmental or climatic variables and, if so, which variables are74

considered?75
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iii) Are the data used by the authors new and if so what type of data is used to represent76

malaria?77

iv) In which locations is the study based?78

v) What time periods does the paper cover?79

vi) Is the analysis primarily mechanistic or statistical in nature and what are the main methods?80

vii) What aspects of seasonality does the paper consider (e.g. timing of malaria peaks, difference81

between minimum and maximum, environmental drivers)?82

viii) Is the paper primarily concerned with climate change?83

ix) Is the method of particular interest because of its novelty or because it creates a solution84

to a particular problem?85

x) Does the paper call for work on this issue?86

The answers to these questions were recorded systematically to produce a reference for the87

comparison of approaches to investigating malaria seasonality as well as the global coverage of88

these attempts.89

3 Results90

Classifying each manuscript using the above questionnaire generated a considerable amount of91

detailed information. For brevity, we summarize this information in general terms below. To92

provide readers with increasing levels of detail, we include 6 supplemental tables in the SI, and93

finally provide the raw database as an additional supplemental file.94

3.1 Regions95

In total, we identified 159 manuscripts that satisfied our criteria for inclusion (Flowchart 1).96

Across these papers, the vast majority (74.2%, 118/159) concerned the effects of climate and97
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seasonality on malaria in Africa (see Figure 1). 5 studies covered all of Africa, while 9 focused on98

regions of Africa (Table S1). Excluding these regional and continent-wide studies, there were 10499

studies of 26 African countries. Outside Africa, there were 28 studies within Asia, with China100

(8) and India (4) being the two most studied countries (Figure 1). Beyond these locations, there101

were 11 studies in South and Central America, 2 studies in Iran and 2 studies in Europe (1102

each in Portugal and Poland). Some studies attempted to analyze single locations within the103

countries of interest, while others utilized data from numerous locations within the country. For104

complete classification of the frequency of location utilization, see Table S1.105

3.2 Malaria Metrics106

Malaria transmission has historically been evaluated using various metrics. Abundances or fre-107

quency of blood feeding by anophelene mosquitoes, the vectors of malaria, have been used as a108

proxy for transmission, and a measure of transmission potential . EIR, which is the product of109

the number of vectors attempting to feed and the percent of mosquitoes actively infective, gives110

quantitative estimates of the number of infective bites per person per unit time. Prevalence of111

infections or incidence of clinical cases, detected actively in the community or passively at health112

facilities provide direct measures of the current level of transmission and disease within human113

hosts. Different metrics of malaria are representative of different aggregated temporal windows114

of transmission, which complicates attempts to link the environmental drivers and malariometric115

outcomes of seasonal transmission.116

117

Across the 159 manuscripts, 21 used mosquito abundance as a malaria metric (Fig. S1 a).118

The majority of these studies concerned regions of Africa. Incidence of clinical disease was the119

most frequently investigated malaria metric (62 papers), and most of the regions of the globe120

with malaria were represented by studies using this metric (Fig. S1 b). EIR and infection121

prevalence were only investigated in regions of Africa (Fig. S1 b, c respectively). As with122
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mosquito abundance, EIR and prevalence were far less frequently studied relative to incidence123

(6 and 18 studies respectively).124

3.3 Climatic Drivers125

The most commonly reported aspect of malaria seasonality was observed temporal relationships126

between a given malaria metric and a given putative environmental or climatic driver of that127

seasonality. The most direct method of obtaining data in specific locations is to take on-site128

measurements of variables of interest or to use local weather stations. However, accurate and129

complete records of all variables of interest across space and time may be lacking, particularly130

in many of the resource-poor locations of interest for malaria transmission. Over wider areas131

the use of nationally collected data from weather station networks may be more appropriate132

(e.g. National Meteorological Services Agency in Ethiopia, Islamic Republic of Iran Meteoro-133

logical Organisation, and China Meteorological Administration). A common source of global134

climatic data is WORLDCLIM which, by interpolating data to cover areas away from initial135

weather station locations, has made available fine resolution interpolated surfaces from several136

trusted weather databases over a 50 year time period [Hijmans et al., 2005]. An alternative to137

terrestrial weather and climate data is provided by satellite sensor such as Moderate-resolution138

Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites; [King et al., 2003]. Un-139

like data from weather stations which can be patchy in their coverage, satellite sensors can140

achieve complete global coverage, and data from satellite mounted sensors such as the Advanced141

Very High Resolution Radiometer can be used to infer variables such as sea surface temper-142

ature [McClain, 1983], water vapour levels [King et al., 2003], atmospheric gas concentrations143

[Thies & Bendix, 2011] and precipitation [Kidd & Levizzani, 2011] as well as compute vegeta-144

tion indices such as the normalised difference vegetation index (NDVI) which measures the145

“greenness” of vegetation based on its reflectance. The choice of data source on climatic drivers146

of malaria metrics will depend on various factors such as the spatial and temporal resolutions,147
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time period and location of the study in question.148

149

The majority of papers analyzed the relationship between malaria metrics and temperature150

or rainfall (40.3%, 64/159 and 34%, 54/159, respectively; Figure 2 a,b). Satellite-derived indices151

quantifying vegetation coverage were also frequently investigated (11.3%, 18/159; Figure 2c),152

often in conjunction with temperature and/or rainfall. All other potential drivers (e.g., relative153

humidity, wind speed and direction, sunspots) were either used rarely (2.5%, 4/159; Figure 2d)154

or in conjunction with a subset of the three main drivers (12.6%, 20/159). Here we summarize155

findings from those studies that used statistical methods to investigate seasonal drivers.156

3.3.1 Temperature157

Temperature covariates were found to be a significant driver of malaria seasonality in statistical158

models more frequently than any other climatological drivers (64). Amongst temperature-based159

variables, minimum monthly temperature was most frequently found to have a significantly160

relationship with temporal malaria metrics (24 analyses), followed by maximum monthly tem-161

perature (19 analyses) and mean monthly temperature (12 analyses). The range of significant162

time lags between monthly temperature and malaria metrics varied by both region and, as163

expected, malaria metric. As with all analyses, the dominance of malaria incidence-based in-164

vestigations within the literature was again evident. However, as is evident by the history of165

lab and field-based experiments correlating temperature with mosquito population dynamics166

[Craig et al., 1999], it is not surprising that 14 papers found a significant relationship between167

some measure of monthly temperature and vector abundance (Fig. S2). All but one of these was168

a zero-month lag, with a single study lagging temperature by two months and all but one of the169

studies concerned regions in Africa (one was in Portugal). Incidence was the most frequently in-170

vestigated malaria metric, and of the 62 statistical analyses that correlated climatological drivers171

with incidence, 28 found a significant relationship between monthly temperature and incidence.172
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Temperature was a significant driver in incidence studies throughout the Old World, with lags173

ranging from 0 to 9 months (Fig. 3). EIR, the other direct measure of current transmission174

activity within a region, was found to be significantly related to temperature in 4 studies, at175

lags from 0 to 5 month, all within Africa (Fig. S3). Finally, across the 4 papers that found sig-176

nificant relationships between monthly temperature and prevalence, all again occurred in Africa177

and most found a maximum lag of 2 months significant (Fig. S4c). A more detailed break-down178

of the number of times a specific temperature variable was found to be a significant driver of a179

specific malaria metric in a specific region can be found in the SI.180

3.3.2 Rainfall181

54 papers across the globe have found rainfall to be a significant predictor of malaria seasonality.182

Ten papers found a significant relationship between mean monthly rainfall and malaria metrics.183

Presumably driven by the non-linear relationship between rainfall and malaria, many investi-184

gators assessed specific statistics of rainfall other than mean monthly amount, such as seasonal185

rainfall [Mabaso et al., 2007], total rainfall during a set period (e.g., [Small et al., 2003]), and186

various other indices of variation. 2 papers (both based in Africa) found a significant relation-187

ship between rainfall and vector abundance (Fig. S5) with lagged relationships between 0 and188

2 months. For both incidence and EIR, lags ranged from 0 to 4 months (33 papers, Fig. 4; 2189

papers, Fig. S6 respectively). Across the 3 papers that found significant relationships between190

monthly rainfall and prevalence, all found a 0 month lag to be statistically significant (Fig. S7a).191

A more detailed regional break-down of the number of times a specific rainfall variable was found192

to be a significant driver of a specific malaria metric can be found in the SI.193

3.3.3 Vegetation Indices194

18 papers found a satellite-derived vegetation index to be a significant driver of malaria metrics;195

all but three used NDVI. Across various monthly vegetation indices, 4 papers found a significant196

correlations to vector abundance (Fig. S8). All of these were 0 month lags and located in197
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either Africa or Asia. Significant relationships between vegetation indices and incidence were198

found across the globe at 0 to 3 month lags (9 papers, Fig. S9). 2 papers found significant199

concurrent relationships between vegetation indices and EIR in Africa (Fig. S10) and across the200

3 papers that found significant relationships between monthly vegetation indices and prevalence,201

also all in Africa, lags of 0.5 and 1 month were identified. (Fig. S11a). Again, more detailed202

break-downs of these results are provided in the SI.203

3.4 Approaches - Statistical Methods204

The database of seasonality studies included a wide range of different statistical modeling ap-205

proaches to investigate empirical associations between malaria metrics an environmental drivers206

(116 papers). These ranged from descriptive approaches to fuzzy logic models and complex207

spatio-temporal methods. Thirteen studies used methods classified by the authors as ’simple.’208

This included descriptive methods and purely correlative approaches with no model fitting. The209

largest number of papers, 38, used classes of regression methods including both parametric and210

non-parametric. Some included residual error structures such as autoregressive terms. Logistic211

and Poisson regression were common approaches within this group along with several multivari-212

ate methods and mixed models. A further six studies used spatial methods, including spatial213

regression and spatial autocorrelation terms, along with geostatistical and niche modelling meth-214

ods, and two additional studies used explicitly spatio-temporal methods. Ten of the papers using215

statistical methods used Bayesian approaches. Of these, two were spatial models and one used216

spatio-temporal methods.217

218

The overall number of papers published per year increased towards the present (Fig. S12),219

although a clear trend of increasing modeling sophistication was evident, with a proportional220

decline in studies using simple statistical methods and non-spatial regression approaches whilst221

spatial and Bayesian approaches increased. Almost all of the descriptive papers concentrated on222

10



Asia and Africa and were largely concerned with malaria cases or incidence. Rainfall and temper-223

ature predictors were commonly used within this group of papers. Among the models using re-224

gression methods the most common malaria metrics investigated were again number of cases and225

incidence. However, within this group the diversity of malaria metrics investigated was greater226

than for other approaches. The majority of papers using regression methods dealt with Africa but227

there were also examples in Asia, the Americas and Europe. Regression methods, perhaps due to228

the breadth of studies using these approaches, used the most diverse range of predictor variables.229

Malaria cases and prevalence were again well represented by studies using Bayesian methods.230

However, the two studies using spatio-temporal Bayesian models investigated environmental231

drivers of malaria prevalence [Gemperli et al., 2006] and vector abundance [Sogoba et al., 2007].232

Similarly the spatio-temporal regression models were concerned with EIR, vector abundance233

and PR rather than number of cases and incidence [Amek et al., 2012, Mirghani et al., 2010].234

Bayesian modelling approaches were most commonly associated with temperature as a predictor235

along with rainfall in many cases and were mostly focused on Africa.236

3.5 Approaches - Mechanistic Models237

31 publications investigated the possibility of incorporating seasonality, or seasonal drivers, into238

mechanistic models of malaria response variables. The majority of these studied malaria in239

Africa, but there have also been several investigations in Asia and South America (Fig. S13).240

From the initial models of Ross and then Macdonald [Smith et al., 2012], mechanistic models of241

malaria have, in general, not greatly deviated from the original framework [Reiner et al., 2013].242

There have been a few exceptions to this general observation, and some of the most complex243

mechanistic modeling approaches have also been adapted to incorporate seasonal differences in244

malaria. As with the statistical models, there are stark differences in the modeling approach245

between models that attempt to model monthly malaria incidence data or parasite rate surveys246

and models that attempt to model mosquito abundance. However, as was true for the statistical247
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approaches, local rainfall and temperature were the most frequently used climatological covari-248

ates used to drive temporal variation in malaria.249

250

3.5.1 Mosquito abundance251

Anopheles abundance is known to have a non-linear relationship with temperature [Craig et al., 1999].252

If the ambient temperature is too cold or too hot, vectors of malaria have a diminished prob-253

ability of survival. Thus, considerable effort has gone into identifying the optimal temperature254

window for Anopheles. Incorporating temperature into an understanding of the suitable range of255

mosquitoes (and then further a suitable range of malaria) has resulted in global maps of malaria256

potential [Gething et al., 2011]. Additionally, the potential that the regions of the globe that are257

within the optimal temperature window for Anopholes may shift or expand with global climate258

change has resulted in numerous investigations and publications [e.g., [Mordecai et al., 2013]].259

Although much of the work has concerned defining the spatial distribution of temperature that260

is ever in the suitable range for malaria, several efforts have further investigated the seasonality261

of mosquito abundance and climatic drivers’ effect on abundance.262

263

Martens, in 1999, modeled the death rate of mosquitoes as a function of temperature in264

Celsius, g(T ), as:265

g(T ) =
1

−4.4 + 1.31T − 0.3T 2
(1)

From basic maps of climate suitability [Craig et al., 1999] to being used as an integral266

part of complex malaria models [Parham & Michael, 2010, Ermert et al., 2011a], this equa-267

tion/functional form, or an approximation of it, has been used extensively. Other incorpo-268

rations of temperature to identify climate suitability have either taken a simple approach of269

directly defining a window outside of which a mosquito population could not be sustained270
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[Goswami et al., 2012] or using a similar but mathematically different functional form such as271

the logistic equation used by Lourenço et al [Lourenço et al., 2011]. In addition to temperature,272

functional forms have been used to incorporate other climatological covariates such as rainfall273

and temperature into estimates of climate suitability for Anopohles. As with statistical models274

of mosquito abundance, there was no estimated lag between the climatological covariates and275

mosquito abundance.276

277

Complex agent-based models whose primary focus is based on mosquito abundance that in-278

corporate mosquito population ecology and impacts of multiple simultaneous interventions have279

also been built to accommodate multiple climatological drivers as well as some of their inter-280

actions. Eckhoff [Eckhoff, 2011] explicitly tracks cohorts of eggs through their life cycle using281

mechanistic relationships implemented on the individual level. Modelling local population dy-282

namics (as opposed to well-mixed patches common to mechanistic models defined by differential283

equations) may allow for locally optimized control strategies once paramerterized for a specific284

location.285

3.5.2 Malaria incidence286

Several mechanistic models included within our review primarily concern the mathematical prop-287

erties of models that permit intra-annual variation. Recent work by Chitnis et al [Chitnis et al., 2012]288

and Dembele et al [Dembele et al., 2009] have both analyzed periodically fluctuating parameters289

within a larger system of differential or difference equations. Chitnis et al incorporated consid-290

erable complexity, especially with respect to the life cycle of Anopholes, and both analyze the291

asymptotic stability of their system as well as investigate the effects of various control efforts.292

Although these models are not directly applied to data, they provide a rigorous framework within293

which seasonally fluctuating variables, driven by climate or otherwise, can be incorporated. As294

noted in a recent review of mechanistic models of mosquito-borne pathogens [Reiner et al., 2013],295
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the complexity of a mechanistic model is typically determined by the exact purpose of the re-296

search.297

298

A variety of compartmental models of malaria have incorporated temperature and rainfall299

to different ends. For example, Massad et al [Massad2009] incorporated both a seasonal sinu-300

soidal driver of mosquito abundance and a second host population into their compartmental301

modeling approach to assess the risk of travelers to a region with endemic malaria but in doing302

so they ignored the incubation period for both host and mosquito. Conversely, Laneri et al303

[Laneri et al., 2010] used a single host population, but incorporated rainfall, incubation periods304

and secondary infection stages to separate the roles of external forcing and internal feedbacks305

in inter-annual cycles of transmission.306

307

In general, the vast majority of mechanistic models of malaria incidence that incorporate308

seasonality or climate are bespoke to address a specific concern. There are, however, several309

important exceptions. Several research groups have spent the last decade (or more) developing310

extremely complex and detailed models of malaria. Combining statistical approaches, mechanis-311

tic models and in some cases fuzzy logic, these models attempt to recreate transmission patterns312

at large scales. Amongst these approaches, the utilization of climate and climatic drivers differs.313

Researchers from Imperial College and the London School of Hygiene & Tropical Medicine built314

an agent-based simulation model of malaria transmission fitted to 34 transmission settings across315

Africa [Griffin et al., 2010]. Using seasonal profiles of EIR fit to different regions they categorize316

transmission settings into different intensities and identify those locations where reasonable con-317

trol efforts would have the largest impact. The Liverpool Malaria Model [Hoshen & Morse, 2004]318

models both malaria and the climatic drivers themselves and incorporates rainfall and temper-319

ature to drive the vector population. This complex model has been updated to incorporate320

further complexities [Ermert et al., 2011a] and then calibrated and validated on data from West321
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Africa [Ermert et al., 2011b]. Quantities such as the“start”and“end”of the malaria season were322

simulated and compared well with observed values where applicable. This model, as noted in323

[Ermert et al., 2011b], does not incorporate fine-scale hydrologic variability (since there is not324

extensive data to support its inclusion). This has been proposed as an explanation as to why325

year-to-year comparisons between simulations and observations at single locations are generally326

only weekly correlated.327

328

Bomblies and colleagues [Bomblies et al., 2008] have introduced a modelling approach that329

explicitly incorporates hydrologic variability into vector abundance and then malaria incidence.330

In direct response to the typical mismatch of scales between the resolution of climatic drivers331

and the scale of vector population dynamics, the Hydrology, Entomology and Malaria Trans-332

mission Simulator (HYDREMATS) uses soil moisture and local hydrology to calibrate a model333

that captures mosquito abundance at a scale much closer to what is seen in the field, and334

has been used in several small scale validation and calibration studies [Bomblies et al., 2009,335

Yamana & Eltahir, 2011]. The inclusion of hydrology implicitly incorporates a lag between336

rainfall and malaria that is non-linearly determined based on ground cover, control practices337

and size of natural pools within the community. This level of high-resolution hydrological detail338

is difficult to obtain, or accurately simulate for entire regions or countries.339

4 Discussion/Conclusion340

Following an exhaustive literature search, we categorized 159 studies that either explicitly or341

implicitly addressed the seasonality of malaria. The vast majority of these efforts did not in342

fact attempt to quantify or describe the patterns of seasonality per se, but instead associated343

malaria data with climatic data. However, because the climatological covariates themselves fol-344

low seasonal patterns (some more strongly than others), linking climate with malaria, even at a345

lag, indicates the potential presence of seasonality. The two clearest aspects of these studies that346
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partitioned the existing literature, somewhat predictably, were the types of data (both explana-347

tory and response) and the types of analyses (generally speaking, statistical versus mechanistic).348

In every combination, although the limitations of available data soften the conclusions, the pres-349

ence of variation in ‘seasonality’ seems to be both conditioned and driven by location and climate.350

351

As discussed above, the increase in resolution (both spatially and temporally) of satellite-352

based climatological covariates has greatly contributed to the analyses performed and, in many353

cases, the amount of the variation in malaria explained. Additionally, improved data collection354

and data maintenance from existing weather stations, has provided ground reference data with355

which the satellite sensor data can be validated. Due to the necessary transmission steps that356

occur within the mosquito, it is not surprising that climatological covariates that are most clearly357

associated with mosquito ecology have been linked to malaria metrics. Rainfall and temperature,358

measured in a variety of ways, have been found to be significant drivers of malaria considerably359

more than any other covariate (34%, 54/159 and 40.3%, 64/159, respectively). Although there360

is an increase in the spatial and temporal resolution of explanatory covariates, as noted previ-361

ously, existing data are often inadequate to predict mosquito abundance at the fine spatial scale362

upon which mosquito population dynamics occur [Ref]. For example, measured either at a local363

weather station or through satellite derived metrics, it is unclear how to translate a single ‘rain-364

fall’ data location to predict the presence and quantity of larval breeding sites. Satellite-derived365

vegetation indices, such as NDVI, have been demonstrated to be useful to measure landscape366

suitability for mosquitoes (19%, 4/21) but they have only been shown in the literature to cor-367

relate concurrently to abundance (or at most lagged one month). In general, remotely sensed368

climate data provide an opportunity for increased understanding, but their utility (and accu-369

racy) must be tempered by complex confounding variables such as land-type. For example, high370

NDVI values can indicate very different climates depending if the region measured has irrigation,371

is heavily forested or is on the desert fringe. Likewise, due to small-scale variation in land-type,372
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the same amount of rainfall can have a very different impact on mosquito larval sites depending373

on where it is measured.374

375

There are (at least) three different time-scales of malaria metrics, as described below. As the376

time-scale of the metric increases, and the lag between occurrence of a driver of transmission and377

the time its effect is felt upon the given metric increases, the complexity of the relationship like-378

wise increases. First, mosquito population dynamics are essentially instantaneously responsive379

to climatological forcing. In addition to a non-linear relationship to temperature, the necessity of380

rainfall for larval sites combined with the hazard of flushing of these sites by flooding associated381

with heavy rainfall introduces a second non-linear relationship between climate and ‘malaria’382

vis-à-vis mosquito density. Translating the climatic effects through mosquito density, two blood383

meals (one infecting the mosquito and a second infecting a susceptible host) and the IIP clearly384

temporally separates human incidence and climate drivers. Adding to this complexity, climatic385

drivers such as temperature have been shown to influence incubation periods. Thus, the second386

scale of drivers is based on malaria data associated with incidence (e.g. case data, death, etc).387

The longest scales of metrics are associated with prevalence. Integrating the amount of incidence388

across an entire transmission season, and then incorporating the waning of immunity that will389

slowly decrease the contribution of early infections to later prevalence surveys, these malaria390

variables are the least immediately influenced by season. Beyond the expectation of three dif-391

ferent temporal scales of climate influence on malaria, different challenges are involved with392

measuring each of these malaria metrics. Those most likely to be greatly influenced by climate393

(e.g., mosquito abundance) are also the most stochastic and require the most serial samples to394

accurately account for measurement noise.395

396

Perhaps due to the relative simplicity of the corresponding data analysis, or perhaps due to397

the noise reduction that occurs when taking means, synoptic data have been used extensively398
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to assess both seasonal patterns of malaria as well as the effects of climatological covariates on399

malaria data. In a sense, the synoptic curve of incidence in a location is a close proxy to the400

seasonal pattern of malaria within the region. Were there to exist no inter-annual variation in401

incidence (or drivers) these two quantities would be comparable. As such, to infer a basic level402

of understanding of seasonal patterns, synoptic data can be a useful tool. However, in reality the403

previous premise is demonstrably false. Natural, intrinsic periodicity in malaria transmission404

suggests that averaging over years to produce a single value for expected incidence on a given405

day (or, more commonly, in a given month) obfuscates the truth and may bias inference [Ref].406

Further, if climate is closely linked to incidence, averaging incidence across years with vastly dif-407

ferent rainfall or temperature may result in producing seasonal signatures that in practice never408

occur themselves. Finally, global climatological drivers of climate like ENSO have multi-year409

cycles and synoptic data implicitly ignore any potential impact of these sorts of covariates.410

411

The analysis conducted by a paper is typically strongly driven by the question the study is412

designed to address. Because most of the studies included in this review were not focused on413

assessing the strength and signal of seasonality, it is not surprising that the types of analyses414

were not appropriate for those questions. The vast majority of statistical approaches were a415

variation of regression. The most frequent purpose of a study was to link climatological co-416

variates to temporal variation. This variation was acknowledged to occur at both intra- and417

inter-annual scales, but beyond fine-scale temporal variation, the papers most frequently fo-418

cused on inter-annual scales. For the mechanistic approaches, except for a few that investigated419

the intrinsic periodic properties of their system, seasonality was incorporated by including re-420

lationships between parameters and climatological and temporal covariates. The most frequent421

driver of temporal variation in these studies concerned the daily survival rate of the mosquito. A422

non-linear relationship [Martens] has been identified in lab and field studies, where mosquitoes423

are more likely to die at both extremely cold and extremely hot temperatures.424
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425

The scope of this review concerns the current seasonal patterns of malaria across the globe.426

Although it is, thus, outside the purview of this review, the growing literature assessing the po-427

tential changes in the range and incidence of malaria in the face of potential changes in local and428

global climate must be noted. Within our review, 51 publications were excluded from further429

analysis because they were identified as being solely concerned with assessing some aspect of the430

impact of climate change on malaria. Many of these works have combined the predicted climate431

maps produced by WorldClim or ClimMond with the mosquito daily survival rates identified432

by Martens and others to predict either changes in range of climate suitability (which does not433

always imply ‘increases’ in range) or changes in incidence vis-à-vis changes in the length of the434

year for which transmission is possible. Given the extremely complex interplay between the nat-435

ural transmission dynamics of malaria and the impact that humans and economic development436

exert on the system (either positively or negatively), understanding the consequences of a 5◦ C437

increase in local temperature on malaria remains a pertinent, but poorly understood problem.438

439

It is important to note that several previous studies have paved the way for this comprehen-440

sive review and have, themselves, begun the effort in earnest to quantify seasonal patterns either441

on small scales or in large regions across the globe. Mabaso et al [Mabaso et al., 2005] applied442

Markham’s concentration index [Markham, 1970] to data from Zimbabwe. They identified signif-443

icant effects of both temperature and rainfall in determining the strength and timing of seasonal444

outbreaks. Roca-Feltrer et al [Roca-Feltrer et al., 2010] conducted a systematic literature review445

of studies concerning the age of paediatric hospital admissions with sever malaria syndromes.446

This was followed by estimations of the potential impact of seasonal malaria chemoprevention447

on children across Africa [Cairns et al., 2012], work which suggested that seasonal prevention448

strategies could avert millions of malaria cases and tens of thousand childhood deaths every449

year. Ermert et al [Ermert et al., 2011b] utilized the Liverpool model [Ermert et al., 2011a] to450
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approximate seasonality by identifying when the estimated EIR in a location first exceeded 0.1.451

They also were able to reliably recreate seasonal quantities such as the beginning and end of the452

‘season’ with their model when applied to West Africa. Gemperli et al [Gemperli et al., 2006]453

used a seasonality map derived from climatological covariates (rainfall, temperature and NDVI,454

Ref) within a mechanistic modeling framework to estimate the length of the malaria season.455

Each of these studies, as well as several others, has indicated that there appears to be some level456

of predictability of malaria seasonality in endemic settings.457

458

While these and other studies have investigated aspects of seasonality, either synoptically at459

a large spatial scale or in depth at a small spatial scale, the drivers and patterns of seasonality460

at the global level remain poorly understood. Malaria seasonality, though difficult itself to461

fully describe quantitatively, is not measurable from a single years’ transmission patterns. The462

confounding and driving nature of climatological covariates requires a multi-faceted modeling463

approach. Both statistically and mechanistically, parsing the relative contribution of climate and464

an underlying seasonal pattern to observed data requires acquiring data with a minimal amount465

of measurement error or in sufficient quantities to reduce prediction error. Further, linking the466

patterns observed or identified in one specific location to the surrounding area and understanding467

the uncertainty in the extrapolated patterns of seasonality in the locations where data are scarce468

is critical. Both statistical and mechanistic approaches provide useful (and different) information469

and, thus, both should be used in concert to most adequately exploit the available data. We470

believe that only by modeling seasonal patterns at both small and large spatial scales while471

incorporating the inter-annual variability introduced by capricious climatological drivers can a472

clear picture of malaria seasonality be understood.473
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Figure Captions605

606

Figure 1: Global distribution of malaria seasonality papers. The frequency various coun-607

tries across the globe are the focus of malaria seasonality papers is plotted with an exponential608

color scale. Studies that considered individual locations are indicated by grey points on the map.609

610

Figure 2: Distribution of malaria seasonality papers by climatological driver. The611

frequency that climatological covariates are identified as significant drivers of malarial metrics is612

plotted for rainfall (panel A), temperature (panel B), vegetation indices (panel C) and all other613

covariates (panel D). Studies that considered individual locations are indicated by grey points614

on the maps.615

616

Figure 3: Reported relationships between temperature and malaria incidence. In617

panel A, the distribution of significant temperature lags to incidence is plotted. Different ap-618

proaches used different forms of monthly temperature in their model. In panels B, C, and D,619

the maximum significant temperature lag is plotted by country in South America, Africa and620

Asia respectively.621

622

Figure 4: Reported relationships between rainfall and malaria incidence. In panel A,623

the distribution of significant rainfall lags to incidence is plotted. Different approaches used dif-624

ferent forms of monthly rainfall in their model. In panels B, C, and D, the maximum significant625

rainfall lag is plotted by country in South America, Africa and Asia respectively.626

627
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Search Term Hits Cumulative total papers

Malaria & Seasonality & Model 74 74

Malaria & Seasonality & Mathematical 47 100

Malaria & Season & Mathematical 121 207

Malaria & Season & Model 181 325

Malaria & Climate & Model 376 640

Malaria & Climate & Mathematical 116 653

Table 1: Summary of systematic search. Number of papers returned by each of the six
search terms selected to systematically compile a list of papers, from the academic search engine
Web of Knowledge, relevant to the seasonality of Plasmodium falciparum transmission.
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