260 research outputs found

    Circumstellar environment of RX Puppis

    Get PDF
    The symbiotic Mira, RX Pup, shows long-term variations in its mean light level due to variable obscuration by circumstellar dust. The last increase in extinction towards the Mira, between 1995 and 2000, has been accompanied by large changes in the degree of polarization in the optical and red spectral range. The lack of any obvious associated changes in the position angle may indicate the polarization variations are driven by changes in the properties of the dust grains (e.g. variable quantity of dust and variable particle size distribution, due to dust grain formation and growth) rather than changes in the viewing geometry of the scattering region(s), e.g. due to the binary rotation.Comment: Paper presented at Torun 2000 conference on Post-AGB objects as a phase of stellar evolution; 8 pages, 3 figure

    Charged-Lepton Flavour Physics

    Full text link
    This writeup of a talk at the 2011 Lepton-Photon symposium in Mumbai, India, summarises recent results in the charged-lepton flavour sector. I review searches for charged-lepton flavour violation, lepton electric dipole moments and flavour-conserving CP violation. I also discuss recent progress in tau-lepton physics and in the Standard Model prediction of the muon anomalous magnetic moment.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 23 pages, 14 figure

    Second-opinion stress tele-echocardiography for the Adonhers (Aged donor heart rescue by stress echo) project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To resolve the current shortage of donor hearts, we established the Adonhers protocol. An upward shift of the donor age cut-off limit (from the present 55 to 65 years) is acceptable if a stress echo screening on the candidate donor heart is normal. This study aimed to verify feasibility of a "second opinion" of digitally transferred images of stress echo results to minimize technical variability in selection of aged donor hearts for heart transplant.</p> <p>Methods</p> <p>The informatics infrastructure was created for a core lab reading with a second opinion from the Pisa stress echo lab. To test the system, simulation standard stress echo cineloops were sent digitally from 5 peripheral labs to the central core lab.</p> <p>Starting January 2009, real marginal donor stress echos were sent via internet to the central core echo lab, Pisa, for a second opinion before heart transplant.</p> <p>Results</p> <p>In the simulation protocol, 30 dipyridamole stress echocardiograms were sent from the five peripheral echo labs to the central core lab in Pisa. Both the echo images and reports were correctly uploaded in the web system and sent to the core echo lab; the second opinion evaluation was obtained in all cases (100% feasibility). In the transplant protocol, eight donor cases were sent to the Pisa core lab for the second opinion protocol, and six of them were transplanted in marginal recipients.</p> <p>Conclusions</p> <p>Second-Opinion Stress Tele-Echocardiography can effectively be performed in a network aimed to safely expand the heart donor pool for heart transplant.</p

    Path dependence in energy systems and economic development

    Get PDF
    Energy systems are subject to strong and long-lived path dependence, owing to technological, infrastructural, institutional and behavioural lock-ins. Yet, with the prospect of providing accessible cheap energy to stimulate economic development and reduce poverty, governments often invest in large engineering projects and subsidy policies. Here, I argue that while these may achieve their objectives, they risk locking their economies onto energy-intensive pathways. Thus, particularly when economies are industrializing, and their energy systems are being transformed and are not yet fully locked-in, policymakers should take care before directing their economies onto energy-intensive pathways that are likely to be detrimental to their long-run prosperity

    Search for the standard model Higgs boson at LEP

    Get PDF

    Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    Get PDF
    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na(+) concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11103-006-9112-0 and is accessible for authorized users

    Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient

    Get PDF
    Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients. © 2013 Moustakas et al

    Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury

    Get PDF
    Traumatic brain injury is a heterogeneous and multifaceted neurological disorder that involves diverse pathophysiological pathways and mechanisms. Thorough characterization and monitoring of the brain’s status after neurotrauma is therefore highly complicated. Magnetic resonance imaging (MRI) provides a versatile tool for in vivo spatiotemporal assessment of various aspects of central nervous system injury, such as edema formation, perfusion disturbances and structural tissue damage. Moreover, recent advances in MRI methods that make use of contrast agents have opened up additional opportunities for measurement of events at the level of the cerebrovasculature, such as blood–brain barrier permeability, leukocyte infiltration, cell adhesion molecule upregulation and vascular remodeling. It is becoming increasingly clear that these cerebrovascular alterations play a significant role in the progression of post-traumatic brain injury as well as in the process of post-traumatic brain repair. Application of advanced multiparametric MRI strategies in experimental, preclinical studies may significantly aid in the elucidation of pathomechanisms, monitoring of treatment effects, and identification of predictive markers after traumatic brain injury

    Multifaceted value profiles of forest owner categories in South Sweden: The river helge å catchment as a case study

    Get PDF
    Forest landscapes provide benefits from a wide range of goods, function and intangible values. But what are different forest owner categories\u27 profiles of economic use and non-use values? This study focuses on the complex forest ownership pattern of the River Helge å catchment including the Kristianstad Vattenrike Biosphere Reserve in southern Sweden. We made 89 telephone interviews with informants representing the four main forest owner categories. Our mapping included consumptive and non-consumptive direct use values, indirect use values, and non-use values such as natural and cultural heritage. While the value profiles of non-industrial forest land owners and municipalities included all value categories, the forest companies focused on wood production, and the Swedish Environmental Protection Agency on nature protection. We discuss the challenges of communicating different forest owners\u27 economic value profiles among stakeholders, the need for a broader suite of forest management systems, and fora for collaborative planning. © 2013 The Author(s)

    Magnetic resonance imaging of brain angiogenesis after stroke

    Get PDF
    Stroke is a major cause of mortality and long-term disability worldwide. The initial changes in local perfusion and tissue status underlying loss of brain function are increasingly investigated with noninvasive imaging methods. In addition, there is a growing interest in imaging of processes that contribute to post-stroke recovery. In this review, we discuss the application of magnetic resonance imaging (MRI) to assess the formation of new vessels by angiogenesis, which is hypothesized to participate in brain plasticity and functional recovery after stroke. The excellent soft tissue contrast, high spatial and temporal resolution, and versatility render MRI particularly suitable to monitor the dynamic processes involved in vascular remodeling after stroke. Here we review recent advances in the field of MR imaging that are aimed at assessment of tissue perfusion and microvascular characteristics, including cerebral blood flow and volume, vascular density, size and integrity. The potential of MRI to noninvasively monitor the evolution of post-ischemic angiogenic processes is demonstrated from a variety of in vivo studies in experimental stroke models. Finally, we discuss some pitfalls and limitations that may critically affect the accuracy and interpretation of MRI-based measures of (neo)vascularization after stroke
    corecore