24 research outputs found

    Resonant enhancement in leptogenesis

    Get PDF
    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this review article, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis

    Flavor effects in leptogenesis

    Get PDF
    Flavor effects can have a significant impact on the final estimate of the lepton (and therefore baryon) asymmetry in scenarios of leptogenesis. It is therefore necessary to account fully for this flavor dynamics in the relevant transport equations that describe the production (and washout) of the asymmetry. Doing so can both open up and restrict viable regions of parameter space relative to the predictions of more approximate calculations. In this review, we identify the regimes in which flavor effects can be relevant and illustrate their impact in a number of phenomenological models. These include type I and type II seesaw embeddings, and low-scale resonant scenarios. In addition, we provide an overview of the semi-classical and field-theoretic methods that have been developed to capture flavor effects in a consistent way

    Muon Anomalous Magnetic Moment and mu -> e gamma in B-L Model with Inverse Seesaw

    Full text link
    We study the anomalous magnetic moment of the muon, a_\mu, and lepton flavor violating decay \mu -> e \gamma in TeV scale B-L extension of the Standard Model (SM) with inverse seesaw mechanism. We show that the B-L contributions to a_\mu are severely constrained, therefore the SM contribution remains intact. We also emphasize that the current experimental limit of BR(\mu -> e \gamma) can be satisfied for a wide range of parameter space and it can be within the reach of MEG experiment.Comment: 10 pages, 4 Figure

    The forward physics facility at the high-luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    Long-lived light scalars at the LHC

    No full text
    In the minimal left-right realization of TeV scale seesaw for neutrino masses, there is a phenomenologically allowed range of parameters where one of the neutral scalar particles from the right-handed symmetry breaking sector could have a mass at the GeV scale. We discuss the constraints on this particle from low-energy flavor observables, and find that such a light particle is necessarily long-lived, and can be searched for at the LHC via displaced signals of a collimated photon jet. This decay mode provides a new test of TeV scale left-right seesaw model since this is in sharp contrast with any generic beyond the Standard Model light scalar, which would decay to leptons and jets as well.SCOPUS: cp.jinfo:eu-repo/semantics/publishe
    corecore