473 research outputs found

    Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters

    Get PDF
    AbstractBiodegradable films were produced from blends contained a high amount of thermoplastic starch (TPS) and poly(lactic acid) (PLA) plasticized with different adipate or citrate esters. It was not possible to obtain pellets for the production of films using only glycerol as a plasticizer. The plasticization of the PLA with the esters and mixture stages added through extrusion was critical to achieve a blend capable of producing films by blow extrusion. Adipate esters were the most effective plasticizers because they interacted best with the PLA and yielded films with appropriate mechanical properties

    Boekbesprekings

    Get PDF
    No abstract available

    Continuous media interpretation of supersymmetric Wess-Zumino type models

    Get PDF
    Supersymmetric Wess-Zumino type models are considered as classical material media that can be interpreted as fluids of ordered strings with heat flow along the strings or a mixture of fluids of ordered strings with either a cloud of particles or a flux of directed radiation.Comment: 14 pages, Latex, No Figure

    Four dimensional "old minimal" N=2 supersymmetrization of R^4

    Get PDF
    We write in superspace the lagrangian containing the fourth power of the Weyl tensor in the "old minimal" d=4, N=2 supergravity, without local SO(2) symmetry. Using gauge completion, we analyze the lagrangian in components. We find out that the auxiliary fields which belong to the Weyl and compensating vector multiplets have derivative terms and therefore cannot be eliminated on-shell. Only the auxiliary fields which belong to the compensating nonlinear multiplet do not get derivatives and could still be eliminated; we check that this is possible in the leading terms of the lagrangian. We compare this result to the similar one of "old minimal" N=1 supergravity and we comment on possible generalizations to other versions of N=1,2 supergravity.Comment: 31 pages, no figures. Minor corrections. Details of the full calculation included as an appendix. Reference adde

    Experimental properties of Bose-Einstein condensates in 1D optical lattices: Bloch oscillations, Landau-Zener tunneling and mean-field effects

    Full text link
    We report experimental results on the properties of Bose-Einstein condensates in 1D optical lattices. By accelerating the lattice, we observed Bloch oscillations of the condensate in the lowest band, as well as Landau-Zener (L-Z) tunneling into higher bands when the lattice depth was reduced and/or the acceleration of the lattice was increased. The dependence of the L-Z tunneling rate on the condensate density was then related to mean-field effects modifying the effective potential acting on the condensate, yielding good agreement with recent theoretical work. We also present several methods for measuring the lattice depth and discuss the effects of the micromotion in the TOP-trap on our experimental results.Comment: 11 pages, 14 figure

    Statistical anisotropy of magnetohydrodynamic turbulence

    Full text link
    Direct numerical simulations of decaying and forced magnetohydrodynamic (MHD) turbulence without and with mean magnetic field are analyzed by higher-order two-point statistics. The turbulence exhibits statistical anisotropy with respect to the direction of the local magnetic field even in the case of global isotropy. A mean magnetic field reduces the parallel-field dynamics while in the perpendicular direction a gradual transition towards two-dimensional MHD turbulence is observed with k−3/2k^{-3/2} inertial-range scaling of the perpendicular energy spectrum. An intermittency model based on the Log-Poisson approach, ζp=p/g2+1−(1/g)p/g\zeta_p=p/g^2 +1 -(1/g)^{p/g}, is able to describe the observed structure function scalings.Comment: 4 pages, 3 figures. To appear in Phys.Rev.

    Optimal prediction for moment models: Crescendo diffusion and reordered equations

    Full text link
    A direct numerical solution of the radiative transfer equation or any kinetic equation is typically expensive, since the radiative intensity depends on time, space and direction. An expansion in the direction variables yields an equivalent system of infinitely many moments. A fundamental problem is how to truncate the system. Various closures have been presented in the literature. We want to study moment closure generally within the framework of optimal prediction, a strategy to approximate the mean solution of a large system by a smaller system, for radiation moment systems. We apply this strategy to radiative transfer and show that several closures can be re-derived within this framework, e.g. PNP_N, diffusion, and diffusion correction closures. In addition, the formalism gives rise to new parabolic systems, the reordered PNP_N equations, that are similar to the simplified PNP_N equations. Furthermore, we propose a modification to existing closures. Although simple and with no extra cost, this newly derived crescendo diffusion yields better approximations in numerical tests.Comment: Revised version: 17 pages, 6 figures, presented at Workshop on Moment Methods in Kinetic Gas Theory, ETH Zurich, 2008 2 figures added, minor correction

    Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror

    Get PDF
    We discuss an experimental scheme to create a low-dimensional gas of ultracold atoms, based on inelastic bouncing on an evanescent-wave mirror. Close to the turning point of the mirror, the atoms are transferred into an optical dipole trap. This scheme can compress the phase-space density and can ultimately yield an optically-driven atom laser. An important issue is the suppression of photon scattering due to ``cross-talk'' between the mirror potential and the trapping potential. We propose that for alkali atoms the photon scattering rate can be suppressed by several orders of magnitude if the atoms are decoupled from the evanescent-wave light. We discuss how such dark states can be achieved by making use of circularly-polarized evanescent waves.Comment: 8 pages, 4 figure
    • …
    corecore