1,503 research outputs found

    Effects of surface plasma treatment on threshold voltage hysteresis and instability in metal-insulator-semiconductor (MIS) AlGaN/GaN heterostructure HEMTs

    Get PDF
    In a bid to understand the commonly observed hysteresis in the threshold voltage (VTH) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors during forward gate bias stress, we have analyzed a series of measurements on devices with no surface treatment and with two different plasma treatments before the in-situ Al2O3 deposition. The observed changes between samples were quasi-equilibrium VTH, forward bias related VTH hysteresis, and electrical response to reverse bias stress. To explain these effects, a disorder induced gap state model, combined with a discrete level donor, at the dielectric/semiconductor interface was employed. Technology Computer-Aided Design modeling demonstrated the possible differences in the interface state distributions that could give a consistent explanation for the observations

    Net Charge on a Noble Gas Atom Adsorbed on a Metallic Surface

    Full text link
    Adsorbed noble gas atoms donate (on the average) a fraction of an electronic charge to the substrate metal. The effect has been experimentally observed as an adsorptive change in the electronic work function. The connection between the effective net atomic charge and the binding energy of the atom to the metal is theoretically explored.Comment: ReVvTeX 3.1 format, Two Figures, Three Table

    Self-Similar Scalar Field Collapse: Naked Singularities and Critical Behaviour

    Get PDF
    Homothetic scalar field collapse is considered in this article. By making a suitable choice of variables the equations are reduced to an autonomous system. Then using a combination of numerical and analytic techniques it is shown that there are two classes of solutions. The first consists of solutions with a non-singular origin in which the scalar field collapses and disperses again. There is a singularity at one point of these solutions, however it is not visible to observers at finite radius. The second class of solutions includes both black holes and naked singularities with a critical evolution (which is neither) interpolating between these two extremes. The properties of these solutions are discussed in detail. The paper also contains some speculation about the significance of self-similarity in recent numerical studies.Comment: 27 pages including 5 encapsulated postcript figures in separate compressed file, report NCL94-TP1

    Measurements of hydrogen sulfide (H2S) using PTR-MS: Calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region

    Get PDF
    Natural gas production is associated with emissions of several trace gases, some of them classified as air toxics. While volatile organic compounds (VOCs) have received much attention, hydrogen sulfide (H2S) can also be of concern due to the known health impacts of exposure to this hazardous air pollutant. Here, we present quantitative, fast time-response measurements of H2S using proton-transfer-reaction mass-spectrometry (PTR-MS) instruments. An ultra-light-weight PTR-MS (ULW-PTR-MS) in a mobile laboratory was operated for measurements of VOCs and H2S in a gas and oil field during the Uintah Basin Winter Ozone Study (UBWOS) 2012 campaign. Measurements of VOCs and H2S by a PTR-MS were also made at the Horse Pool ground site in the Uintah Basin during UBWOS 2013. The H2S measurement by PTR-MS is strongly humidity dependent because the proton affinity of H2S is only slightly higher than that of water. The H2S sensitivity of PTR-MS ranged between 0.6–1.4 ncps ppbv−1 during UBWOS 2013. We compare the humidity dependence determined in the laboratory with in-field calibrations and determine the H2S mixing ratios for the mobile and ground measurements. The PTR-MS measurements at Horse Pool are evaluated by comparison with simultaneous H2S measurements using a PTR time-of-flight MS (PTR-ToF-MS) and a Picarro cavity ring down spectroscopy (CRDS) instrument for H2S / CH4. On average 0.6 ± 0.3 ppbv H2S was present at Horse Pool during UBWOS 2013. The correlation between H2S and methane enhancements suggests that the source of H2S is associated with oil and gas extraction in the basin. Significant H2S mixing ratios of up to 9 ppmv downwind of storage tanks were observed during the mobile measurements. This study suggests that H2S emissions associated with oil and gas production can lead to short-term high levels close to point sources, and elevated background levels away from those sources. In addition, our work has demonstrated that PTR-MS can make reliable measurements of H2S at levels below 1 ppbv

    Expanding and Collapsing Scalar Field Thin Shell

    Full text link
    This paper deals with the dynamics of scalar field thin shell in the Reissner-Nordstro¨\ddot{o}m geometry. The Israel junction conditions between Reissner-Nordstro¨\ddot{o}m spacetimes are derived, which lead to the equation of motion of scalar field shell and Klien-Gordon equation. These equations are solved numerically by taking scalar field model with the quadratic scalar potential. It is found that solution represents the expanding and collapsing scalar field shell. For the better understanding of this problem, we investigate the case of massless scalar field (by taking the scalar field potential zero). Also, we evaluate the scalar field potential when pp is an explicit function of RR. We conclude that both massless as well as massive scalar field shell can expand to infinity at constant rate or collapse to zero size forming a curvature singularity or bounce under suitable conditions.Comment: 15 pages, 11 figure

    Physical model of near-Earth asteroid (1917) Cuyo from ground-based optical and thermal-IR observations

    Get PDF
    Context: The near-Earth asteroid (1917) Cuyo was subject to radar and lightcurve observations during a close approach in 1989, and observed up until 2008. It was selected as one of our ESO Large Programme targets, aimed at observational detections of the YORP effect through long-term lightcurve monitoring and physical modelling of near-Earth asteroids. Aims: We aimed to constrain physical properties of Cuyo: shape, spin-state, and spectroscopic & thermophysical properties of the surface. Methods: We acquired photometric lightcurves of Cuyo spanning the period between 2010 and 2013, which we combined with published lightcurves from 1989-2008. Our thermal-infrared observations were obtained in 2011. Rotationally-resolved optical spectroscopy data were acquired in 2011 and combined with all available published spectra to investigate any surface material variegation. Results: We developed a convex lightcurve-inversion shape of Cuyo that suggests the presence of an equatorial ridge, typical for an evolved system close to shedding mass due to fast rotation. We determine limits of YORP strength through lightcurve-based spin-state modelling, including both negative and positive acceleration values, between -0.7x10-8 rad day-2 and 1.7x10-8 rad day-2. Thermo-physical modelling with the ATPM provides constraints on the geometric albedo, PV = 0.24 ± 0.07, the effective diameter Deff = 3.15 ± 0.08 km, the thermal inertia, 44 ±- 9 J m-2s-1/2K-1, and a roughness fraction of 0.52 ± 0.26. This enabled a YORP strength prediction of (-6.39 ± 0.96)x10-10 rad day-2. We also see evidence of surface compositional variation. Conclusions: The low value of YORP predicted by means of thermophysical analysis, consistent with the results of the lightcurve study, might be due to the self-limiting properties of rotational YORP, possibly involving movement of sub-surface and surface material. This may also be consistent with the surface compositional variation that we see. The physical model of Cuyo can be used to investigate cohesive forces as a way to explain why some targets survive rotation rates faster than the fission limit

    Topological features of massive bosons on two dimensional Einstein space-time

    Full text link
    In this paper we tackle the problem of constructing explicit examples of topological cocycles of Roberts' net cohomology, as defined abstractly by Brunetti and Ruzzi. We consider the simple case of massive bosonic quantum field theory on the two dimensional Einstein cylinder. After deriving some crucial results of the algebraic framework of quantization, we address the problem of the construction of the topological cocycles. All constructed cocycles lead to unitarily equivalent representations of the fundamental group of the circle (seen as a diffeomorphic image of all possible Cauchy surfaces). The construction is carried out using only Cauchy data and related net of local algebras on the circle.Comment: 41 pages, title changed, minor changes, typos corrected, references added. Accepted for publication in Ann. Henri Poincare

    Dimensional Dependence of Black Hole Formation in Self-Similar Collapse of Scalar Field

    Get PDF
    We study classical and quantum self-similar collapses of a massless scalar field in higher dimensions, and examine how the increase in the number of dimensions affects gravitational collapse and black hole formation. Higher dimensions seem to favor formation of black hole rather than other final states, in that the initial data space for black hole formation enlarges as dimension increases. On the other hand, the quantum gravity effect on the collapse lessens as dimension increases. We also discuss the gravitational collapse in a brane world with large but compact extra dimensions.Comment: Improved a few arguments and added a figur

    A retrospective evaluation of the impact of a dedicated obstetric and neonatal transport service on transport times within an urban setting

    Get PDF
    OBJECTIVE:To determine whether the establishment of a dedicated obstetric and neonatal flying squad resulted in improved performance within the setting of a major metropolitan area.DESIGN AND SETTING:The Cape Town metropolitan service of the Emergency Medical Services was selected for a retrospective review of the transit times for the newly implemented Flying Squad programme. Data were imported from the Computer Aided Dispatch programme. Dispatch, Response, Mean Transit and Total Pre-hospital times relating to the obstetric and neonatal incidents was analysed for 2005 and 2008. RESULTS: There was a significant improvement between 2005 and 2008 in all incidents evaluated. Flying Squad dispatch performance improved from 11.7% to 46.6% of all incidents dispatched within 4 min (p < 0.0001). Response time performance at the 15-min threshold did not demonstrate a statistically significant improvement (p = 0.4), although the improvement in the 30-min performance category was statistically significant in both maternity and neonatal incidents. Maternity incidents displayed the greatest improvement with the 30-min performance increasing from 30.3% to 72.9%. The analysis of the mean transit times demonstrated that neonatal transfers displayed the longest status time in all but one of the categories. Even so, the introduction of the Flying Squad programme resulted in a reduction in a total pre-hospital time from 177 to 128 min. CONCLUSION: The introduction of the Flying Squad programme has resulted in significant improvement in the transit times of both neonatal and obstetric patients. In spite of the severe resource constraints facing developing nations, the model employed offers significant gains
    • …
    corecore