2,084 research outputs found
Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime
A method for computing the stress-energy tensor for the quantized, massless,
spin 1/2 field in a general static spherically symmetric spacetime is
presented. The field can be in a zero temperature state or a non-zero
temperature thermal state. An expression for the full renormalized
stress-energy tensor is derived. It consists of a sum of two tensors both of
which are conserved. One tensor is written in terms of the modes of the
quantized field and has zero trace. In most cases it must be computed
numerically. The other tensor does not explicitly depend on the modes and has a
trace equal to the trace anomaly. It can be used as an analytic approximation
for the stress-energy tensor and is equivalent to other approximations that
have been made for the stress-energy tensor of the massless spin 1/2 field in
static spherically symmetric spacetimes.Comment: 34 pages, no figure
Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder
The effect of a weak three-dimensional (3d) isotropic laser speckle disorder
on various thermodynamic properties of a dilute Bose gas is considered at zero
temperature. First, we summarize the derivation of the autocorrelation function
of laser speckles in 1d and 2d following the seminal work of Goodman. The goal
of this discussion is to show that a Gaussian approximation of this function,
proposed in some recent papers, is inconsistent with the general background of
laser speckle theory. Then we propose a possible experimental realization for
an isotropic 3d laser speckle potential and derive its corresponding
autocorrelation function. Using a Fourier transform of that function, we
calculate both condensate depletion and sound velocity of a Bose-Einstein
condensate as disorder ensemble averages of such a weak laser speckle potential
within a perturbative solution of the Gross-Pitaevskii equation. By doing so,
we reproduce the expression of the normalfluid density obtained earlier within
the treatment of Landau. This physically transparent derivation shows that
condensate particles, which are scattered by disorder, form a gas of
quasiparticles which is responsible for the normalfluid component
The arrow of time: from universe time-asymmetry to local irreversible processes
In several previous papers we have argued for a global and non-entropic
approach to the problem of the arrow of time, according to which the ''arrow''
is only a metaphorical way of expressing the geometrical time-asymmetry of the
universe. We have also shown that, under definite conditions, this global
time-asymmetry can be transferred to local contexts as an energy flow that
points to the same temporal direction all over the spacetime. The aim of this
paper is to complete the global and non-entropic program by showing that our
approach is able to account for irreversible local phenomena, which have been
traditionally considered as the physical origin of the arrow of time.Comment: 48 pages, 8 figures, revtex4. Accepted for publication in Foundations
of Physic
Urban energy consumption and CO2 emissions in Beijing: current and future
This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions
Path integral duality and Planck scale corrections to the primordial spectrum in exponential inflation
The enormous red-shifting of the modes during the inflationary epoch suggests
that physics at the Planck scale may modify the standard, nearly,
scale-invariant, primordial, density perturbation spectrum. Under the principle
of path-integral duality, the space-time behaves as though it has a minimal
length (which we shall assume to be of the order of the Planck
length), a feature that is expected to arise when the quantum gravitational
effects on the matter fields have been taken into account. Using the method of
path integral duality, in this work, we evaluate the Planck scale corrections
to the spectrum of density perturbations in the case of exponential inflation.
We find that the amplitude of the corrections is of the order of , where and denote the inflationary
and the Planck energy scales, respectively. We also find that the corrections
turn out to be completely independent of scale. We briefly discuss the
implications of our result, and also comment on how it compares with an earlier
result.Comment: 12 pages, 1 figure, RevTex4 forma
Itinerant electron metamagnetism in LaCoSi
The strongly exchange enhanced Pauli paramagnet LaCoSi is found to
exhibit an itinerant metamagnetic phase transition with indications for
metamagnetic quantum criticality. Our investigation comprises magnetic,
specific heat, and NMR measurements as well as ab-initio electronic structure
calculations. The critical field is about 3.5 T for and 6 T for , which is the lowest value ever found for rare earth intermetallic
compounds. In the ferromagnetic state there appears a moment of about 0.2
/Co at the Co-sites, but sigificantly smaller moments at the 4d
and Co-sites.Comment: 11 pages, 5 figures, PRB Rapid Communication, in prin
Exchange coupling in CaMnO and LaMnO: configuration interaction and the coupling mechanism
The equilibrium structure and exchange constants of CaMnO and LaMnO
have been investigated using total energy unrestricted Hartree-Fock (UHF) and
localised orbital configuration interaction (CI) calculations on the bulk
compounds and MnO and MnO clusters. The
predicted structure and exchange constants for CaMnO are in reasonable
agreement with estimates based on its N\'eel temperature. A series of
calculations on LaMnO in the cubic perovskite structure shows that a
Hamiltonian with independent orbital ordering and exchange terms accounts for
the total energies of cubic LaMnO with various spin and orbital orderings.
Computed exchange constants depend on orbital ordering. UHF calculations tend
to underestimate exchange constants in LaMnO, but have the correct sign
when compared with values obtained by neutron scattering; exchange constants
obtained from CI calculations are in good agreement with neutron scattering
data provided the Madelung potential of the cluster is appropriate. Cluster CI
calculations reveal a strong dependence of exchange constants on Mn d e
orbital populations in both compounds. CI wave functions are analysed in order
to determine which exchange processes are important in exchange coupling in
CaMnO and LaMnO.Comment: 25 pages and 9 postscript figure
- …
