66 research outputs found

    On the Stress Intensity Factor of cracks emanating from circular and elliptical holes in orthotropic plates

    Get PDF
    Stress Intensity Factors (SIFs) for cracks emanating from circular holes in two-dimensional orthotropic bodies were numerically computed taking into account the effect of geometry and orthotropy. A semi-analytical expression for the correction factor was found fitting the numerical data. Finally, it was demonstrated how the same expression can be used to calculate the SIF for cracks emanating from elliptical holes once appropriate changes of variables are made

    Hybrid titanium-CFRP laminates for high-performance bolted joints

    No full text
    This paper presents an experimental and numerical investigation of the mechanical response of bolted joints manufactured using new hybrid composite laminates based on the substitution of CFRP plies with titanium plies. The local hybridization of the material is proposed to increase the efficiency of the bolted joints in CFRP structures. Two modeling strategies, based on non-linear finite element methods, are proposed for the analysis of the bolt-bearing and transition regions of the hybrid laminates. The bolt-bearing region is simulated using a three-dimensional finite element model that predicts ply failure mechanisms, whereas the free-edge of the transition region is simulated using plane stress and cohesive elements. The numerical and experimental results indicate that the use of hybrid composites can drastically increase the strength of CFRP bolted joints and therefore increase the efficiency of this type of connection. In addition, the numerical models proposed are able to predict the failure mechanisms and the strength of hybrid composite laminates with a good accuracy

    Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach

    Get PDF
    Thin ply laminates are a new class of composite materials with great potential for application in the design of thinner and highly optimized components, resulting in potential weight savings and improved mechanical performance. These new composites can stir the development of lighter structures, overcoming current design limitations as well as notably reducing the onset and development of matrix cracking and delamination events. This paper presents the application of two recent modeling methods for the failure analysis and strength prediction of open-hole thin ply laminates under tensile loading, which exhibit a brittle response upon failure: (i) the analytical coupled energy-stress Finite Fracture Mechanics (FFMs) technique, and (ii) the FE-based Phase Field (PF) approach for fracture that is incorporated into an enhanced assumed solid shell element. The predictions obtained using both strategies are compared with experimental data. These correlations exhibit a very satisfactory level of agreement, proving the robustness and reliability of both methods under consideration

    Inter-laminar shear stress in hybrid CFRP/austenitic steel

    Get PDF
    Bolted joints are the most common solution for joining composite components in aerospace structures. Critical structures such as wing to fuselage joints, or flight control surface fittings use bolted joining techniques. Recent research concluded that higher bearing strengths in composite bolted joints can be achieved by a CFRP/ Titanium hybrid lay-up in the vicinity of the bolted joint. The high costs of titanium motivate a similar research with the more cost competitive austenitic steel. An experimental program was performed in order to compare the apparent inter-laminar shear stress (ILSS) of a CFRP reference beam with the ILSS of hybrid CFRP/Steel beams utilizing different surface treatments in the metallic ply. The apparent ILSS was determined by short beam test, a three-point bending test. Finite element models using cohesive elements in the CFRP/Steel interface were built to simulate the short beam test in the reference beam and in the highest interlaminar shear stress hybrid beam. The main parameters for a FEM simulation of inter laminar shear are the cohesive elements damage model and appropriate value for the critical energy release rate. The results show that hybrid CFRP/Steel have a maximum ILSS very similar to the ILSS of the reference beam. Hybrid CFRP/Steel is a competitive solution when compared with the reference beam ILSS. FEM models were able to predict the maximum ILSS in each type of beam

    Physically-sound simulation of low-velocity impact on fiber reinforced laminates

    Full text link
    A high-fidelity virtual tool for the numerical simulation of low-velocity impact damage in unidirectional composite laminates is proposed. A continuum material model for the simulation of intraply damage phenomena is implemented in a numerical scheme as a user subroutine of the commercially available Abaqus finite element package. Delaminations are simulated using of cohesive surfaces. The use of structured meshes, aligned with fiber directions allows the physically-sound simulation of matrix cracks parallel to fiber directions, and their interaction with the development of delaminations. The implementation of element erosion criteria and the application of intraply and interlaminar friction allow for the simulation of fiber splits and their entanglement, which in turn results in permanent indentation in the impacted laminate. It is shown that this simulation strategy gives sound results for impact energies bellow and above the Barely Visible Impact Damage threshold, up to laminate perforation condition

    A methodology to generate design allowables of composite laminates using machine learning

    Get PDF
    This work represents the first step towards the application of machine learning techniques in the prediction of statistical design allowables of composite laminates. Building on data generated analytically, four machine algorithms (XGBoost, Random Forests, Gaussian Processes and Artificial Neural Networks) are used to predict the notched strength of composite laminates and their statistical distribution, associated to the uncertainty related to the material properties and geometrical features. This work focuses not only on the so-called Legacy Quad Laminates (0°/90°/±45°), typically used in the design of composite aerostructures, but also on the newer concept of double-double (or double-angle ply) laminates. Very good representations of the design space, translating in low generalization relative errors of around ±10%, and very accurate representations of the distributions of notched strengths around single design points and corresponding B-basis allowables are obtained. All machine learning algorithms, with the exception of the Random Forests, show very good performances, with Gaussian Processes outperforming the others for very small number of data points while Artificial Neural Networks have better performance for larger training sets. This work serves as basis for the prediction of first-ply failure, ultimate strength and failure mode of composite specimens based on non-linear finite element simulations, providing further reduction of the computational time required to virtually obtain the design allowables for composite laminates
    • …
    corecore