3,861 research outputs found

    Dimensional Crossover in the Effective Second Harmonic Generation of Films of Random Dielectrics

    Full text link
    The effective nonlinear response of films of random composites consisting of a binary composite with nonlinear particles randomly embedded in a linear host is theoretically and numerically studied. A theoretical expression for the effective second harmonic generation susceptibility, incorporating the thickness of the film, is obtained by combining a modified effective-medium approximation with the general expression for the effective second harmonic generation susceptibility in a composite. The validity of the thoretical results is tested against results obtained by numerical simulations on random resistor networks. Numerical results are found to be well described by our theory. The result implies that the effective-medium approximation provides a convenient way for the estimation of the nonlinear response in films of random dielectrics.Comment: 9 pages, 2 figures; accepted for publication in Phys. Rev.

    Microheated substrates for patterning cells and controlling development

    No full text
    Here, we seek to control cellular development by devising a means through which cells can be subjected to a microheated environment in standard culture conditions. Numerous techniques have been devised for controlling cellular function and development via manipulation of surface environmental cues at the micro- and nanoscale. It is well understood that temperature plays a significant role in the rate of cellular activities, migratory behavior (thermotaxis), and in some cases, protein expression. Yet, the effects and possible utilization of micrometer-scale temperature fields in cell cultures have not been explored. Toward this end, two types of thermally isolated microheated substrates were designed and fabricated, one with standard backside etching beneath a dielectric film and another with a combination of surface and bulk micromachining and backside etching. The substrates were characterized with infrared microscopy, finite element modeling, scanning electron microscopy, stylus profilometry, and electrothermal calibrations. Neuron culture studies were conducted on these substrates to 1) examine the feasibility of using a microheated environment to achieve patterned cell growth and 2) selectively accelerate neural development on regions less than 100mummu mwide. Results show that attached neurons, grown on microheated regions set at 37 circC~^circ C, extended processes substantially faster than those incubated at 25 circC~^circ Con the same substrate. Further, unattached neurons were positioned precisely along the length of the heater filament (operating at 45 circC~^circ C) using free convection currents. These preliminary findings indicate that microheated substrates may be used to direct cellular development spatially in a practical manner.$hfillhbox[1414]

    Quantifying the Effect of Registration Error on Spatio-Temporal Fusion

    Get PDF
    It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios. © 2008-2012 IEEE

    Photoproduction of the charged top-pions at the LHeC

    Full text link
    The top triangle moose (TTM)(TTM) model, which can be seen as the deconstructed version of the topcolor-assisted technicolor (TC2TC2) model, predicts the existence of the charged top-pions πt± \pi_{t}^{\pm} in low energy spectrum. In the context of this model, we consider photoproduction of πt±\pi^{\pm}_{t} via the subprocesses γbtπt\gamma b\to t \pi_{t}^{-} and γbˉtˉπt+\gamma \bar{b}\to \bar{t} \pi_{t}^{+} at the large hadron-electron collider (LHeCLHeC), in which high energy photon beams are generated by using the Compton backscatting method. We find that, as long as the charged top-pions are not too heavy, they can be abundantly produced via γb\gamma b collision.Comment: 16 pages, 5 figure

    Newton-Hooke type symmetry of anisotropic oscillators

    Full text link
    The rotation-less Newton--Hooke - type symmetry found recently in the Hill problem and instrumental for explaining the center-of-mass decomposition is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton-Hooke symmetry is recovered in the isotropic case. Star escape from a Galaxy is studied as application.Comment: Updated version with more figures added. 34 pages, 7 figures. Dedicated to the memory of J.-M. Souriau, deceased on March 15 2012, at the age of 9

    Managing appointment booking under customer choices

    Get PDF
    Motivated by the increasing use of online appointment booking platforms, we study how to offer appointment slots to customers to maximize the total number of slots booked. We develop two models, nonsequential offering and sequential offering, to capture different types of interactions between customers and the scheduling system. In these two models, the scheduler offers either a single set of appointment slots for the arriving customer to choose from or multiple sets in sequence, respectively. For the nonsequential model, we identify a static randomized policy, which is asymptotically optimal when the system demand and capacity increase simultaneously, and we further show that offering all available slots at all times has a constant factor of two performance guarantee. For the sequential model, we derive a closed form optimal policy for a large class of instances and develop a simple, effective heuristic for those instances without an explicit optimal policy. By comparing these two models, our study generates useful operational insights for improving the current appointment booking processes. In particular, our analysis reveals an interesting equivalence between the sequential offering model and the nonsequential offering model with perfect customer preference information. This equivalence allows us to apply sequential offering in a wide range of interactive scheduling contexts. Our extensive numerical study shows that sequential offering can significantly improve the slot fill rate (6%\xe2\x80\x938% on average and up to 18% in our testing cases) compared with nonsequential offering. Given the recent and ongoing growth of online and mobile appointment booking platforms, our research findings can be particularly useful to inform user interface design of these booking platforms

    Managing appointment booking under customer choices

    Get PDF
    Motivated by the increasing use of online appointment booking platforms, we study how to offer appointment slots to customers in order to maximize the total number of slots booked. We develop two models, non-sequential offering and sequential offering, to capture different types of interactions between customers and the scheduling system. In these two models, the scheduler offers either a single set of appointment slots for the arriving customer to choose from, or multiple sets in sequence, respectively. For the non-sequential model, we identify a static randomized policy which is asymptotically optimal when the system demand and capacity increase simultaneously, and we further show that offering all available slots at all times has a constant factor of 2 performance guarantee. For the sequential model, we derive a closed-form optimal policy for a large class of instances and develop a simple, effective heuristic for those instances without an explicit optimal policy. By comparing these two models, our study generates useful operational insights for improving the current appointment booking processes. In particular, our analysis reveals an interesting equivalence between the sequential offering model and the non-sequential offering model with perfect customer preference information. This equivalence allows us to apply sequential offering in a wide range of interactive scheduling contexts. Our extensive numerical study shows that sequential offering can significantly improve the slot fill rate (6-8% on average and up to 18% in our testing cases) compared to non-sequential offering
    corecore