17 research outputs found

    Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa

    Get PDF
    Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota

    Making management decisions in the face of uncertainty: a case study using the Burdekin catchment in the Great Barrier Reef

    No full text
    Modelling and monitoring pollutants entering into the Great Barrier Reef (GBR) lagoon remain important priorities for the Australian and Queensland governments. Uncertainty analysis of pollutant load delivery to the GBR would: (1) inform decision makers on their ability to meet environmental targets; (2) identify whether additional measurements are required to make confident decisions; and (3) determine whether investments into remediation activities are actually making a difference to water quality and the health of the GBR. Using a case study from the Upper Burdekin catchment where sediment concentrations are the focus, herein we explore and demonstrate different ways of communicating uncertainty to a decision maker. In particular, we show how exceedance probabilities can identify hot spots for future monitoring or remediation activities and how they can be used to inform target setting activities. We provide recommendations for water quality specialists that allow them to make more informed and scientifically defensible decisions that consider uncertainty in both the monitoring and modelling data, as well as allowing the calculation of exceedances from a threshold

    Physiological functions of malate shuttles in plants and algae

    No full text
    International audienceThe malate shuttle, as a valve for photosynthetic electron dissipation, has been proposed for >50 years, but only recently has this function been clearly demonstrated. The plastidial NAD-MDH is essential for embryogenesis and chloroplast development. This role is not due to its enzymatic activity but rather to its ability to stabilize a large AAA-ATPase complex at the inner envelope. The plNAD-MDH is therefore a moonlighting protein. The malate shuttle connects fatty acid biosynthesis in the chloroplast to mitochondrial reactive oxygen species (ROS) production and to programmed cell death in plants. The malate shuttle connects fatty acid catabolism in the peroxisome to photosynthesis and chloroplast metabolism in algae. Expression of malate shuttle components is responsive to CO2 levels. The latest results indicate its critical role in plant photorespiration and points to a possible role in the algal CO2-concentrating mechanism

    Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios

    No full text
    Ecosystem-based management requires predictive models of ecosystem dynamics. There are typically insufficient empirical data available to parameterise these complex models, and so decision-makers commonly rely on beliefs elicited from experts. However, such expert beliefs are necessarily limited because (i) only a small proportion of ecosystem components and dynamics have been observed; (ii) uncertainty about ecosystem dynamics can result in contradictory expert judgements and (iii) elicitation time and resources are limited. We use an ensemble of dynamic ecosystem models to extrapolate a limited set of stated expert beliefs into a wider range of revealed beliefs about how the ecosystem will respond to perturbations and management. Importantly, the method captures the expert uncertainty and propagates it through to predictions. We demonstrate this process and its potential value by applying it to the conservation of the threatened malleefowl (Leipoa ocellata) in the Murray mallee ecosystems of southern Australia. In two workshops, we asked experts to construct a qualitative ecosystem interaction network and to describe their beliefs about how the ecosystem will respond to particular perturbations. We used this information to constrain an ensemble of 10 community models, leaving a subset that could reproduce stated expert beliefs. We then interrogated this ensemble of models to reveal experts’ implicit beliefs about management scenarios that were not a part of the initial elicitation exercises. Our method uses straightforward questions to efficiently elicit expert beliefs, and then applies a flexible modelling approach to reveal those experts’ beliefs about the dynamics of the entire ecosystem. It allows rapid planning of ecosystem-based management informed by expert judgement, and provides a basis for value-of-information analyses and adaptive management
    corecore