329 research outputs found

    Environmental baseline monitoring - Vale of Pickering: Phase I - final report (2015/16)

    Get PDF
    This report presents the collated results from the BGS-led project Science-based environmental baseline monitoring associated with shale gas development in the Vale of Pickering (including supplementary air quality monitoring in Lancashire). The project has been funded by a grant awarded by DECC for the period August 2015 – 31st March 2016. It complements (and extends to air quality) an on-going project, funded by BGS and the other project partners, in which similar activities are being carried out in the Fylde area of Lancashire. The project has initiated a wide-ranging environmental baseline monitoring programme that includes water quality (groundwater and surface water), seismicity, ground motion, atmospheric composition (greenhouse gases and air quality), soil gas and radon in air (indoors and outdoors). The motivation behind the project(s) was to establish independent monitoring in the area around the proposed shale gas hydraulic fracturing sites in the Vale of Pickering, North Yorkshire (Third Energy) and in Lancashire (Cuadrilla) before any shale gas operations take place. As part of the project, instrumentation has been deployed to measure, in real-time or near real-time, a range of environmental variables (water quality, seismicity, atmospheric composition). These data are being displayed on the project’s web site (www.bgs.ac.uk/Valeofpickering). Additional survey, sampling and monitoring has also been carried out through a co-ordinated programme of fieldwork and laboratory analysis, which has included installation of new monitoring infrastructure, to allow compilation of one of the most comprehensive environmental datasets in the UK. It is generally recognised that at least 12 months of baseline data are required. The duration of the grant award (7 months) has meant that this has not yet been possible. However there are already some very important findings emerging from the limited datasets which need be taken in to account when developing future monitoring strategy, policy and regulation. The information is not only relevant to the Vale of Pickering and Lancashire but will be more widely applicable in the UK and internationally. Although shale gas operations in other parts of the world are well-established there is a paucity of good baseline data and effective guidance on monitoring. It is hoped that the monitoring project will continue to allow at least 12 months of data for each of the work packages to be compiled and analysed. It will also allow the experience gained and the scientifically-robust findings to be used to develop and establish effective environmental monitoring strategies for shale gas and similar industrial activities

    No evidence for mutations in exons 1, 8 and 18 of the patched gene in sporadic skin lesions of Brazilian patients

    Get PDF
    There is strong evidence that the patched (PTCH) gene is a gene for susceptibility to the nevoid basal cell carcinoma syndrome. PTCH has also been shown to mutate in both familial and sporadic basal cell carcinomas. However, mutations of the gene seem to be rare in squamous cell carcinomas. In order to characterize the role of the gene in the broader spectrum of sporadic skin malignant and pre-malignant lesions, we performed a polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis of genomic DNA extracted from 105 adult patients (46 females and 59 males). There were 66 patients with basal cell carcinomas, 30 with squamous cell carcinomas, 2 with malignant melanomas and 7 patients with precancerous lesions. Two tissue samples were collected from each patient, one from the central portion of the tumor and another from normal skin. Using primers that encompass the entire exon 1, exon 8 and exon 18, where most of the mutations have been detected, we were unable to demonstrate any band shift. Three samples suspected to present aberrant migrating bands were excised from the gel and sequenced directly. In addition, we sequenced 12 other cases, including tumors and corresponding normal samples. A wild-type sequence was found in all 15 cases. Although our results do not exclude the presence of clonal alterations of the PTCH gene in skin cancers or mutations in other exons that were not screened, the present data do not support the presence of frequent mutations reported for non-melanoma skin cancer of other populations.45946

    Environmental Baseline Monitoring Project. Phase II, final report

    Get PDF
    This report is submitted in compliance with the conditions set out in the grant awarded to the British Geological Survey (BGS), for the period April 2016 – March 2017, to support the jointly-funded project "Science-based environmental baseline monitoring". It presents the results of monitoring and/or measurement and preliminary interpretation of these data to characterise the baseline environmental conditions in the Vale of Pickering, North Yorkshire and for air quality, the Fylde in Lancashire ahead of any shale gas development. The two areas where the monitoring is taking place have seen, during the project, planning applications approved for the exploration for shale gas and hydraulic fracturing. It is widely recognised that there is a need for good environmental baseline data and establishment of effective monitoring protocols ahead of any shale gas/oil development. This monitoring will enable future changes that may occur as a result of industrial activity to be identified and differentiated from other natural and man-made changes that are influencing the baseline. Continued monitoring will then enable any deviations from the baseline, should they occur, to be identified and investigated independently to determine the possible causes, sources and significance to the environment and public health. The absence of such data in the United States has undermined public confidence, led to major controversy and inability to identify and effectively deal with impact/contamination where it has occurred. A key aim of this work is to avoid a similar situation and the independent monitoring being carried out as part of this project provides an opportunity to develop robust environmental baseline for the two study areas and monitoring procedures, and share experience that is applicable to the wider UK situation. This work is internationally unique and comprises an inter-disciplinary researcher-led programme that is developing, testing and implementing monitoring methodologies to enable future environmental changes to be detected at a local scale (individual site) as well as across a wider area, e.g. ‘shale gas play’ where cumulative impacts may be significant. The monitoring includes: water quality (groundwater and surface water), seismicity, ground motion, soil gas, atmospheric composition (greenhouse gases and air quality) and radon in air. Recent scientific and other commissioned studies have highlighted that credible and transparent monitoring is key to gaining public acceptance and providing the evidence base to demonstrate the industry’s impact on the environment and importantly on public health. As a result, BGS and its partners initiated in early 2015, a co-ordinated programme of environmental monitoring in Lancashire that was then extended to the Vale of Pickering in North Yorkshire after the Secretary of State for Energy and Climate Change (BEIS) awarded a grant to the British Geological Survey (BGS). The current duration of the grant award is to 31st March 2018. It has so far enabled baseline environmental monitoring for a period of more than 12 months. With hydraulic fracturing of shale gas likely to take place during late 2017/early 2018, the current funding will allow the environmental monitoring to continue during the transition from baseline to monitoring during shale gas operations. This report presents the monitoring results to April 2017 and a preliminary interpretation. A full interpretation is not presented in this report as monitoring is continuing and it is expected that there will be at least six months of additional baseline data before hydraulic fracturing takes place. This represents up to 50% more data for some components of the montoring, and when included in the analysis will significantly improve the characterisation and interpretation of the baseline. In addition to this report, the BGS web site contains further information on the project, near real-time data for some components of the monitoring and links to other projects outputs, e.g. reports and videos (www.bgs.ac.uk/research/groundwater/shaleGas/monitoring/home.html)

    North Atlantic marine <sup>14</sup>C reservoir effects: implications for late-Holocene chronological studies

    Get PDF
    We investigated surface ocean–atmosphere 14C offsets for the later Holocene at eight locations in the eastern North Atlantic. This resulted in 11 new &#916;R assessments for the west coast of Ireland, the Outer Hebrides, the north coast of the Scottish mainland, the Orkney Isles and the Shetland Isles over the period 1300–500 BP. Assessments were made using a robust Multiple Paired Sample (MPS) approach, which is designed to maximize the accuracy of &#916;R determinations. Assessments are placed in context with other available data to enable reconstruction of a realistic picture of surface ocean 14C activity over the Holocene period within the North Atlantic region

    Recommendations for environmental baseline monitoring in areas of shale gas development

    Get PDF
    Environmental monitoring plays a key role in risk assessment and management of industrial operations where there is the potential for the release of contaminants to the environment (i.e. air and water) or for structural damage (i.e. seismicity). The shale-gas industry is one such industry. It is also new to the UK and so specific environmental regulation and other controls have been introduced only recently. Associated with this is a need to carry out monitoring to demonstrate that the management measures to minimise the risk to the environment are being effective. While much of the monitoring required is common to other industries and potentially polluting activities, there are a number of requirements specific to shale gas and to what is a new and undeveloped industry. This report presents recommendations for environmental monitoring associated with shale-gas activities and in particular the monitoring required to inform risk assessment and establish the pre-existing environmental conditions at a site and surrounding area. This baseline monitoring is essential to provide robust data and criteria for detecting any future adverse environmental changes caused by the shale-gas operations. Monitoring is therefore required throughout the lifecycle of a shale gas operation. During this lifecycle, the objectives of the monitoring will change, from baseline characterisation to operational and post-operational monitoring. Monitoring requirements will also change. This report focusses on good practice in baseline monitoring and places it in the context of the longer-term environmental monitoring programme, recognising the need to transition from the baseline condition and to establish criteria for detecting any changes within the regulatory framework. The core suite of environmental monitoring activities currently required to support regulatory compliance, i.e. meet environmental and other permit conditions, encompasses monitoring of seismicity, water quality (groundwater and surface water) and air quality. Recommendations for each of these are included in this report. Additionally, recommendations for a number of other types of environmental monitoring are included – radon in air, soil gas and ground motion (subsidence/uplift). These are not associated directly with regulatory compliance but can provide information to support interpretation of statutory monitoring results. They are also considered important for public reassurance. Health impacts arising from radon and damage caused by ground motion are both issues of public concern in relation to shale gas

    Impacts on groundwater quality from abandoned hydrocarbon wells - final report

    Get PDF
    This report details a reconnaissance investigation carried out between 2016 and 2018 from a British Geological Survey (BGS)–Environment Agency (EA) collaboration on the impacts of abandoned hydrocarbon (HC) wells on groundwater quality in England. The investigation involved collation of a database of HC wells that were identified from records provided by DECC (Department of Energy & Climate Change; now BEIS: Business, Energy & Industrial Strategy) as being abandoned (as opposed to operational or unspecified), categorising according to factors such as oil or gas designation, depth of HC resource, time since abandonment, productive life, absence of active wells nearby, and occurrence and type of overlying aquifer(s). From this categorisation, a subset of 27 sites were shortlisted for further investigation and fact sheets were produced for each outlining regional geology, hydrogeology and potential groundwater monitoring points in the area. Using these factsheets, four study areas were assessed as being most suitable for further field investigation. These comprised two gas fields: Nooks Farm (Staffordshire), and Ashdown (Sussex), and two oil fields: Hemswell (Lincolnshire) and Lomer (Hampshire). Groundwater sampling campaigns were conducted in 2016–2017 in the four study areas, with potential sampling points identified within a 5 km buffer zone around (downstream of) the HC well or HC field. In several areas, the number of sampling points was very limited as locations of HC wells do not necessarily have any relationship with locations of overlying aquifers. In others, large numbers of sites were deemed unsuitable for sampling, for reasons including disuse, decommissioning, safety or lack of access. This made representative sampling of groundwater a severe challenge. Suitable sites from the four study areas were sampled twice during the project, with a total of 48 groundwater samples being collected over the two campaigns. Results from both sampling rounds have shown that the presence of hydrocarbons in the groundwater is limited. In the first sampling round, a maximum dissolved methane (CH4) concentration of 407 μg/L was recorded. However, this relatively high value was not repeated when the site was visited during the second round of groundwater sampling. The value was below the threshold required for δ13CCH4 isotopic analysis. Some groundwater samples showed detectable quantities of organic compounds including VOCs (volatile organic compounds) and PAHs (polycyclic aromatic hydrocarbons) as well as pesticides, herbicides, fungicides, surfactants, analgesics and veterinary compounds. These were, however, almost invariably present in low concentrations, none could be linked unequivocally to the presence of abandoned HC wells and many were clearly due to other anthropogenic activities. As a result of the difficulties finding representative and suitable groundwater sampling sites, a further reconnaissance was undertaken in May 2017 to identify potential alternative gas and oil fields. This confirmed further the difficulties in finding suitable areas for investigating groundwater quality and further groundwater sampling was therefore not attempted. An alternative approach was used to investigate two abandoned HC well areas: Ashdown, one of the original study areas, and a new location at Bolney (also Sussex). A soil gas survey was completed at each of these locations in order to investigate whether soil gas proximal to the former well location contained any evidence of HC leakage. Due to poor ground conditions at the time of sampling, the results are ambiguous, but do show elevated concentrations of both CO2 and CH4. Further work in dry ground conditions would be required to say with certainty that these concentrations are linked directly to the presence of the gas wells

    Preliminary assessment of the environmental baseline in the Fylde, Lancashire

    Get PDF
    This report presents the collated preliminary results from the British Geological Survey (BGS) led project Science-based environmental baseline monitoring associated with shale gas development in the Fylde, Lancashire. The project has been funded by a combination of BGS National Capability funding, in-kind contributions from project partners and a grant awarded by the Department of Business Energy and Investment Strategy (BEIS). It complements an on-going project, in which similar activities are being carried out, in the Vale of Pickering, North Yorkshire. Further information on the projects can be found on the BGS website: www.bgs.ac.uk. The project has initiated a wide-ranging environmental baseline monitoring programme that includes water quality (groundwater and surface water), seismicity, ground motion, atmospheric composition (greenhouse gases and air quality), soil gas and radon in air (indoors and outdoors). The motivation behind the project(s) was to establish independent monitoring in the area around the proposed shale gas hydraulic fracturing sites in the Fylde, Lancashire (Cuadrilla Resources Ltd) before any shale gas operations take place. As part of the project, instrumentation has been deployed to measure, in real-time or near real-time, a range of environmental variables (water quality, seismicity, atmospheric composition). These data are being displayed on the project’s web site (www.bgs.ac.uk/lancashire). Additional survey, sampling and monitoring has also been carried out through a co-ordinated programme of fieldwork and laboratory analysis, which has included installation of new monitoring infrastructure, to allow compilation of one of the most comprehensive environmental datasets in the UK. The monitoring programme is continuing. However, there are already some very important findings emerging from the limited datasets which should be taken into account when developing future monitoring strategy, policy and regulation. The information is not only relevant to Lancashire but will be applicable more widely in the UK and internationally. Although shale gas operations in other parts of the world are well-established, there is a paucity of good baseline data and effective guidance on monitoring. The project will also allow the experience gained, and the scientifically-robust findings to be used, to develop and establish effective environmental monitoring strategies for shale gas and similar industrial activities

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Environmental baseline monitoring : Phase III final report (2017-2018)

    Get PDF
    High-quality environmental baseline monitoring data are being collected in areas around two proposed shale gas sites near Kirby Misperton, North Yorkshire and Little Plumpton Lancashire. Monitoring has now been on-going for over two years and has produced an internationally unique data set that will allow any future changes that arise from industrial activities at either or both shale gas sites to be detected and characterised, as well as providing a significant resource for future research. The monitoring includes: water quality, air quality, seismicity, ground motion, soil gas and radon in air. This report presents the results of monitoring in the Vale of Pickering, within which the Kirby Misperton shale gas site (KM8) is located, for the period April 2017–March 2018. It also includes the results of atmospheric composition measurements made near the Little Plumpton (Preston New Road) site. Earlier results and other monitoring in Lancashire are reported elsewhere and can be accessed from the British Geological Survey’s website1. As well as providing valuable insight into the importance of establishing robust information on the conditions before shale gas operations start, it also highlights the challenges in establishing effective monitoring and producing reliable results. For groundwater, this includes the importance of: developing and flushing newly installed boreholes; the spatial variation in water quality and; the selection of monitoring and measuring techniques. Having two years of data has allowed comparison between years. The preliminary analysis reported here has shown that sample populations were not significantly different between the two years. This is directly relevant to the duration of monitoring required by legislation, with the evidence supporting a baseline monitoring period of at least 12 months before any site operations start. The seismic monitoring network installed for measuring background seismicity has operated successfully throughout the reporting period. All but one station show levels of data completeness over 90% which represents a high-quality dataset. There has been no significant change in recorded noise levels at any of the stations in the network. This combined with instrument performance means the network is capable of detecting seismic events with magnitudes of 0.5 ML or less around Kirby Misperton. The monitoring has detected successfully a number of earthquakes around both the Vale of Pickering and the Fylde peninsula. However, all of these are at some distance from the shale gas sites. The Vale of Pickering network has also detected a number of other seismic events that have been attributed to quarry blasts. The magnitudes of these events range from 0.7 ML to 1.6 ML. We have also developed and applied a new magnitude scale to correct for overestimation of magnitudes at small epicentral distances. This results in a significant reduction of the magnitudes of quarry blasts in the Vale of Pickering by over 0.5 magnitude units in some cases. The variance in the magnitude estimates is also slightly reduced. This issue is critical for correct estimation of the magnitudes of any earthquakes that might be induced by hydraulic fracturing. The greenhouse gas monitoring continues to reinforce the conclusion that a baseline at one location is not applicable to other locations. However, the consistency of the baseline measurements (and baseline variability within each year) at both sites clearly suggests that 12 months of baseline monitoring is sufficient to establish a meaningful climatology to compare with analogous climatologies during the operational lifetime of the shale gas sites. Twelve months of data allow differentiation of local and long-range sources of greenhouse gases. At both sites, local (<10 km) sources dominate the contribution to statistically elevated concentration observations. We conclude that: the consistency of the baseline statistics year-to-year at each site separately, strongly validates the utility of these statistics in future comparative work; repeatability and similarity in both mean and statistical variability at each individual site across both annual periods suggests that 12 months of monitoring is sufficient to characterise the baseline at future sites usefully and; the large differences between the baselines at both sites, due to influence of local sources, demonstrate that careful thought and further work may be required to assess the spatial scale over which baselines can be usefully applicable. The baseline distribution of air pollutants measured at the Lancashire site has been broadly similar in 2017 to previous years, but there have been substantial changes observed at Kirby Misperton. There was a noticeable increase in NOx from Autumn 2017 as the site was prepared for hydraulic fracturing operations to begin. The high level of vehicle movements and operation of equipment during this period led to enhanced local NOx emissions. The equipment was removed after operations were suspended and the NOx concentrations returned to broadly the same concentrations seen previously during the baseline period. This highlights the importance of measuring the whole shale-gas operational cycle for air quality as the preparative operations can have a substantial impact on air pollution. In the Vale of Pickering, 133 households volunteered to have detectors for measuring indoor radon concentrations. The results were consistent with the usual log-normal distribution for indoor radon and reflected the locations of the monitoring with respect to whether they were in Radon Affected Areas or not, i.e. radon levels above 200 Bq/m3 were measured in homes in Malton which confirmed the PHE/BGS classification of this location as a Radon Affected Area. Outdoor radon was also measured. There is no indication of elevated outdoor radon concentrations in either the Pickering or Malton Radon Affected Areas, or elsewhere. Results from an active monitor and passive detectors, placed on the Kirby Misperton well site were in good agreement with the average outdoor radon concentrations for the area around Kirby Misperton. The active monitoring showed significant short-term variations over time. However the annual average was consistent, whichever of the techniques was used. Seasonal variability in baseline soil gas and flux values continues to be observed as well as shorter-term diurnal changes and event-driven variations, for example related to the passage of weather systems. The longer-time-series data and the preliminary geostatistical appraisal of selected data suggest that any emissions related to shale gas operations will be easiest to detect in the autumn when baseline biological activity is lower and the soil remains dry. Saturation of the ground in the winter months precludes free gas measurements. A further component of the study is to characterise ground motion (subsidence and/or uplift) in the study areas using satellite data. The objective being to determine what the current situation is, so that any changes that might be caused by hydraulic fracturing, if it takes place, can be identified. The baseline conditions have previously been reported (Ward et al, 2018) and as now hydraulic fracturing has yet taken place, no further analysis has been carried out during this reporting period

    Environmental monitoring : phase 5 final report (April 2019 - March 2020)

    Get PDF
    This report presents the results and interpretation for Phase 5 of an integrated environmental monitoring programme that is being undertaken around two proposed shale gas sites in England – Preston New Road, Lancashire and Kirby Misperton, North Yorkshire. The report should be read in conjunction with previous reports freely available through the project website1 . These provide additional background to the project, presentation of earlier results and the rationale for establishment of the different elements of the monitoring programme
    corecore