34 research outputs found

    Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis: a biomarker identification study

    Get PDF
    Background Sensitive diagnostics are needed for effective management and surveillance of schistosomiasis so that current transmission interruption goals set by WHO can be achieved. We aimed to screen the Schistosoma haematobium secretome to find antibody biomarkers of schistosome infection, validate their diagnostic performance in samples from endemic populations, and evaluate their utility as point of care immunochromatographic tests (POC-ICTs) to diagnose urogenital schistosomiasis in the field.Methods We did a biomarker identification study, in which we constructed a proteome array containing 992 validated and predicted proteins from S haematobium and screened it with serum and urine antibodies from endemic populations in Gabon, Tanzania, and Zimbabwe. Arrayed antigens that were IgG-reactive and a select group of antigens from the worm extracellular vesicle proteome, predicted to be diagnostically informative, were then evaluated by ELISA using the same samples used to probe arrays, and samples from individuals residing in a low-endemicity setting (ie, Pemba and Unguja islands, Zanzibar, Tanzania). The two most sensitive and specific antigens were incorporated into POC-ICTs to assess their ability to diagnose S haematobium infection from serum in a field-deployable format.Findings From array probing, in individuals who were infected, 208 antigens were the targets of significantly elevated IgG responses in serum and 45 antigens were the targets of significantly elevated IgG responses in urine. Of the five proteins that were validated by ELISA, Sh-TSP-2 (area under the curve [AUC](serum)=0.98 [95% CI 0.95-1.00]; AUC(urine)=0.96 [0.93-0.99]), and MS3_01370 (AUCserum=0.93 [0.89-0.97]; AUC(urine)=0.81 [0.72-0.89]) displayed the highest overall diagnostic performance in each biofluid and exceeded that of S haematobium-soluble egg antigen in urine (AUC=0.79 [0.69-0.90]). When incorporated into separate POC-ICTs, Sh-TSP-2 showed absolute specificity and a sensitivity of 75% and MS3_01370 showed absolute specificity and a sensitivity of 89%.Interpretation We identified numerous biomarkers of urogenital schistosomiasis that could form the basis of novel antibody diagnostics for this disease. Two of these antigens, Sh-TSP-2 and MS3_01370, could be used as sensitive, specific, and field-deployable diagnostics to support schistosomiasis control and elimination initiatives, with particular focus on post-elimination surveillance. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Host-parasite interactio

    A continuous intracerebral gene delivery system for in vivo liposome mediated gene therapy

    No full text
    Using a minipump combined with stereotaxic techniques allows continuous delivery of therapeutic genetic materials into the brain. We investigated the therapeutic efficacy of liposome-mediated HSVtk gene transfer of experimental brain F98 glioma followed by treatment with ganciclovir. A single injection of DNA-liposome complexes showed a therapeutically significant decrease in the tumor volume. Continuous intracerebral delivery of DNA-liposome complexes using an osmotic minipump led to complete tumor regression in 36.4% of the treated animals. The safety and toxicity of this gene delivery system were also assessed. No organ pathology was observed in the experimental animals. The continuous gene delivery system could be a useful means of achieving higher doses with less toxicity and without the need for frequent injections
    corecore