308 research outputs found

    Supergravity solitons and non-perturbative superstrings

    Get PDF
    A review is given of the implications of supersymmetric black holes for the non-perturbative formulation of toroidally compactified superstrings, with particular emphasis on symmetry enhancement at special vacua and S-duality of the heterotic string.Comment: Latex 8pp. To appear in Procs. of 1995 Trieste Spring Superstring School and Worksho

    Intersecting M-branes

    Get PDF
    We present the magnetic duals of G\"uven's electric-type solutions of D=11 supergravity preserving 1/41/4 or 1/81/8 of the D=11 supersymmetry. We interpret the electric solutions as nn orthogonal intersecting membranes and the magnetic solutions as nn orthogonal intersecting 5-branes, with n=2,3n=2,3; these cases obey the general rule that pp-branes can self-intersect on (p2)(p-2)-branes. On reduction to D=4D=4 these solutions become electric or magnetic dilaton black holes with dilaton coupling constant a=1a=1 (for n=2n=2) or a=1/3a=1/\sqrt{3} (for n=3n=3). We also discuss the reduction to D=10.Comment: Derivation of an intersection rule added. Some additional refs. Version accepted for publication in PLB. Phyzzx macr

    Supersymmetric Self-Gravitating Solitons

    Get PDF
    We show that the `instantonic' soliton of five-dimensional Yang-Mills theory and the closely related BPS monopole of four-dimensional Yang-Mills/Higgs theory continue to be exact static, and stable, solutions of these field theories even after the inclusion of gravitational, electromagnetic and, in the four-dimensional case, dilatonic interactions, provided that certain non-minimal interactions are included. With the inclusion of these interactions, which would be required by supersymmetry, these exact self-gravitating solitons saturate a gravitational version of the Bogomol'nyi bound on the energy of an arbitrary field configuration.Comment: 39 pages, DAMTP R-93/27, phyzz

    Caged Black Holes: Black Holes in Compactified Spacetimes I -- Theory

    Full text link
    In backgrounds with compact dimensions there may exist several phases of black objects including the black-hole and the black-string. The phase transition between them raises puzzles and touches fundamental issues such as topology change, uniqueness and Cosmic Censorship. No analytic solution is known for the black hole, and moreover, one can expect approximate solutions only for very small black holes, while the phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a forthcoming paper. Goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. Predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the ``overall numerical error''. Field asymptotics and expressions for physical quantities in terms of the numerical ones are supplied. Techniques include ``method of equivalent charges'', free energy, dimensional reduction, and analytic perturbation for small black holes.Comment: 23 pages. v3: version to be published in PRD, 3 references adde

    M5-brane geometries, T-duality and fluxes

    Full text link
    We describe a duality relation between configurations of M5-branes in M-theory and type IIB theory on Taub-NUT geometries with NSNS and RR 3-form field strength fluxes. The flux parameters are controlled by the angles between the M5-brane and the (T)duality directions. For one M5-brane, the duality leads to a family of supersymmetric flux configurations which interpolates between imaginary self-dual fluxes and fluxes similar to the Polchinski-Strassler kind. For multiple M5-branes, the IIB configurations are related to fluxes for twisted sector fields in orbifolds. The dual M5-brane picture also provides a geometric interpretation for several properties of flux configurations (like the supersymmetry conditions, their contribution to tadpoles, etc), and for many non-trivial effects in the IIB side. Among the latter, the dielectric effect for probe D3-branes is dual to the recombination of probe M5-branes with background ones; also, a picture of a decay channel for non-supersymmetric fluxes is suggested.Comment: 30 pages, 3 figure

    Branes on Generalized Calibrated Submanifolds

    Full text link
    We extend previous results on generalized calibrations to describe supersymmetric branes in supergravity backgrounds with diverse fields turned on, and provide several new classes of examples. As an important application, we show that supersymmetric D-branes in compactifications with field strength fluxes, and on SU(3)-structure spaces, wrap generalized calibrated submanifolds, defined by simple conditions in terms of the underlying globally defined, but non-closed, 2- and 3-forms. We provide examples where the geometric moduli of D-branes (for instance D7-branes in 3-form flux configurations) are lifted by the generalized calibration condition. In addition, we describe supersymmetric D6-branes on generalized calibrated 3-submanifolds of half-flat manifolds, which provide the mirror of B-type D-branes in IIB CY compactifications with 3-form fluxes. Supersymmetric sets of such D-branes carrying no homology charges are mirror to supersymmetric sets of D-branes which are homologically non-trivial, but trivial in K-theory. As an additional application, we describe models with chiral gauge sectors, realized in terms of generalized calibrated brane box configurations of NS- and D5-branes, which are supersymmetric but carry no charges, so that no orientifold planes are required in the compactification.Comment: 40 pages, 3 figures, references adde

    Fluid dynamics of R-charged black holes

    Full text link
    We construct electrically charged AdS_5 black hole solutions whose charge, mass and boost-parameters vary slowly with the space-time coordinates. From the perspective of the dual theory, these are equivalent to hydrodynamic configurations with varying chemical potential, temperature and velocity fields. We compute the boundary theory transport coefficients associated with a derivative expansion of the energy momentum tensor and R-charge current up to second order. In particular, we find a first order transport coefficient associated with the axial component of the current.Comment: 31 pages, v2: published version; added some references, discussion of the charge-current changed, results unchanged, v3: typo in formula (15) changed, v4: added footnote 3 in order to clarify the relation of our results to those of arXiv:0809.259

    Small Black Holes on Cylinders

    Full text link
    We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski-space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in hep-th/0204047. We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders.Comment: 23 pages, 1 figure. v2: typos corrected, introduction expanded, v3: presentation of sections 2 and 3 reordered and improved, explanatory remarks added, refs adde

    Extensions of AdS_5 x S^5 and the Plane-wave Superalgebras and Their Realization in the Tiny Graviton Matrix Theory

    Full text link
    In this paper we consider all consistent extensions of the AdS_5 x S^5 superalgebra, psu(2,2|4), to incorporate brane charges by introducing both bosonic and fermionic (non)central extensions. We study the Inonu-Wigner contraction of the extended psu(2,2|4) under the Penrose limit to obtain the most general consistent extension of the plane-wave superalgebra and compare these extensions with the possible BPS (flat or spherical) brane configurations in the plane-wave background. We give an explicit realization of some of these extensions in terms of the Tiny Graviton Matrix Theory (TGMT)[hep-th/0406214] which is the 0+1 dimensional gauge theory conjectured to describe the DLCQ of strings on the AdS_5 x S^5 and/or the plane-wave background.Comment: 27 pages, LaTe

    Open String Attractors

    Full text link
    We present a simple example of a supersymmetric attractor mechanism in the purely open string context of D-branes embedded in curved space-time. Our example involves a class of D3-branes embedded in the 2-charge D1-D5 background of type IIB whose worldvolume contains a 2-sphere. Turning on worldvolume fluxes, these branes carry induced (p,q) string charges. Supersymmetric configurations display a flow of the open string moduli towards an attractor solution independent of their asymptotics. The equations governing this mechanism closely resemble the attractor flow equations for supersymmetric black holes in closed string theory. The BPS equations take the form of a gradient flow and describe worldvolume solitons interpolating between an AdS_2 geometry where the two-sphere has collapsed, and an attractor solution with AdS_2 x S^2 geometry. In these limiting solutions, the preserved supersymmetry is enhanced from 4 to 8 supercharges. We also discuss the interpretation of our solutions as intersecting brane configurations placed in the D1-D5 background, as well as the S-duality transformation to the F1-NS5 background.Comment: 37 pages, 6 figures. v2: small corrections, figure and references adde
    corecore