71 research outputs found

    Critical Behavior of Sandpile Models with Sticky Grains

    Get PDF
    We revisit the question whether the critical behavior of sandpile models with sticky grains is in the directed percolation universality class. Our earlier theoretical arguments in favor, supported by evidence from numerical simulations [ Phys. Rev. Lett., {\bf 89} (2002) 104303], have been disputed by Bonachela et al. [Phys. Rev. E {\bf 74} (2004) 050102] for sandpiles with no preferred direction. We discuss possible reasons for the discrepancy. Our new results of longer simulations of the one-dimensional undirected model fully support our earlier conclusions.Comment: 8 pages, 3 eps figures, accepted in Physica A, elsart.cls attache

    Delocalization in harmonic chains with long-range correlated random masses

    Full text link
    We study the nature of collective excitations in harmonic chains with masses exhibiting long-range correlated disorder with power spectrum proportional to 1/kα1/k^{\alpha}, where kk is the wave-vector of the modulations on the random masses landscape. Using a transfer matrix method and exact diagonalization, we compute the localization length and participation ratio of eigenmodes within the band of allowed energies. We find extended vibrational modes in the low-energy region for α>1\alpha > 1. In order to study the time evolution of an initially localized energy input, we calculate the second moment M2(t)M_2(t) of the energy spatial distribution. We show that M2(t)M_2(t), besides being dependent of the specific initial excitation and exhibiting an anomalous diffusion for weakly correlated disorder, assumes a ballistic spread in the regime α>1\alpha>1 due to the presence of extended vibrational modes.Comment: 6 pages, 9 figure

    Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons

    Full text link
    We report on the generation of coherent phonon polaritons in ZnTe, GaP and LiTaO3_{3} using ultrafast optical pulses. These polaritons are coupled modes consisting of mostly far-infrared radiation and a small phonon component, which are excited through nonlinear optical processes involving the Raman and the second-order susceptibilities (difference frequency generation). We probe their associated hybrid vibrational-electric field, in the THz range, by electro-optic sampling methods. The measured field patterns agree very well with calculations for the field due to a distribution of dipoles that follows the shape and moves with the group velocity of the optical pulses. For a tightly focused pulse, the pattern is identical to that of classical Cherenkov radiation by a moving dipole. Results for other shapes and, in particular, for the planar and transient-grating geometries, are accounted for by a convolution of the Cherenkov field due to a point dipole with the function describing the slowly-varying intensity of the pulse. Hence, polariton fields resulting from pulses of arbitrary shape can be described quantitatively in terms of expressions for the Cherenkov radiation emitted by an extended source. Using the Cherenkov approach, we recover the phase-matching conditions that lead to the selection of specific polariton wavevectors in the planar and transient grating geometry as well as the Cherenkov angle itself. The formalism can be easily extended to media exhibiting dispersion in the THz range. Calculations and experimental data for point-like and planar sources reveal significant differences between the so-called superluminal and subluminal cases where the group velocity of the optical pulses is, respectively, above and below the highest phase velocity in the infrared.Comment: 13 pages, 11 figure

    Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia:a Multinational Point Prevalence Study of Hospitalised Patients

    Get PDF
    Pseudornonas aeruginosa is a challenging bacterium to treat due to its intrinsic resistance to the antibiotics used most frequently in patients with community-acquired pneumonia (CAP). Data about the global burden and risk factors associated with P. aeruginosa-CAP are limited. We assessed the multinational burden and specific risk factors associated with P. aeruginosa-CAP. We enrolled 3193 patients in 54 countries with confirmed diagnosis of CAP who underwent microbiological testing at admission. Prevalence was calculated according to the identification of P. aeruginosa. Logistic regression analysis was used to identify risk factors for antibiotic-susceptible and antibiotic-resistant P. aeruginosa-CAP. The prevalence of P. aeruginosa and antibiotic-resistant P. aeruginosa-CAP was 4.2% and 2.0%, respectively. The rate of P. aeruginosa CAP in patients with prior infection/colonisation due to P. aeruginosa and at least one of the three independently associated chronic lung diseases (i.e. tracheostomy, bronchiectasis and/or very severe chronic obstructive pulmonary disease) was 67%. In contrast, the rate of P. aeruginosa-CAP was 2% in patients without prior P. aeruginosa infection/colonisation and none of the selected chronic lung diseases. The multinational prevalence of P. aeruginosa-CAP is low. The risk factors identified in this study may guide healthcare professionals in deciding empirical antibiotic coverage for CAP patients

    The application of grid technology in systems biology: Parameter estimation

    No full text
    10.1109/HPCASIA.2004.1324060Proceedings - Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region, HPCAsia 2004370-37

    Systems biology is all noise [7]

    No full text
    Current Science8871022-1023CUSC

    Computational approach to systems biology: From fraction to integration and beyond

    No full text
    10.1109/TNB.2004.833699IEEE Transactions on Nanobioscience33144-15

    Amino-acid residue association models for large scale protein-protein interaction prediction

    No full text
    10.3233/ISB-2009-0397In Silico Biology94179-194ISBI

    Rich can get poor: Conversion of hub to non-hub proteins

    Get PDF
    10.1007/s11693-009-9024-9Systems and Synthetic Biology23-475-8
    corecore