12 research outputs found

    Emergence of Bulk CsCl Structure in (CsCl)nCs+ Cluster Ions

    Full text link
    The emergence of CsCl bulk structure in (CsCl)nCs+ cluster ions is investigated using a mixed quantum-mechanical/semiempirical theoretical approach. We find that rhombic dodecahedral fragments (with bulk CsCl symmetry) are more stable than rock-salt fragments after the completion of the fifth rhombic dodecahedral atomic shell. From this size (n=184) on, a new set of magic numbers should appear in the experimental mass spectra. We also propose another experimental test for this transition, which explicitely involves the electronic structure of the cluster. Finally, we perform more detailed calculations in the size range n=31--33, where recent experimental investigations have found indications of the presence of rhombic dodecahedral (CsCl)32Cs+ isomers in the cluster beams.Comment: LaTeX file. 6 pages and 4 pictures. Accepted for publication in Phys. Rev.

    Crossover between ionic/covalent and pure ionic bonding in magnesium oxyde clusters

    Full text link
    An empirical potential with fluctuating charges is proposed for modelling (MgO)_n clusters in both the molecular (small n) and bulk (n->infty) regimes. Vectorial polarization forces are explicitely taken into account in the self-consistent determination of the charges. Our model predicts cuboid cluster structures, in agreement with previous experimental and theoretical results. The effective charge transferred between magnesium and oxygen smoothly increases from 1 to 2, with an estimated crossover size above 300 MgO molecules

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Atmospheric phosphorus deposition at a montane site: Size distribution, effects of wildfire, and ecological implications

    No full text
    International audienceThe dry deposition of atmospheric particulate matter can be a significant source of phosphorus (P) to oligotrophic aquatic ecosystems, including high-elevation lakes. In this study, measurements of the mass concentration and size distribution of aerosol particles and associated particulate P are reported for the southern Sierra Nevada, California, for the period July-October, 2008. Coarse and fine particle samples were collected with Stacked Filter Units and analyzed for Total P (TP) and inorganic P (IP) using a digestion-extraction procedure, with organic P (OP) calculated by difference. Particle size-resolved mass and TP distributions were determined concurrently using a MOUDI cascade impactor. Aerosol mass concentrations were significantly elevated at the study site, primarily due to transport from offsite and emissions from local and regional wildfires. Atmospheric TP concentrations ranged from 11 to 75 ng m−3 (mean = 37 ± 16 ng m−3), and were typically dominated by IP. Phosphorus was concentrated in the coarse (>1 ÎŒm diameter) particle fraction and was particularly enriched in the 1.0-3.2 ÎŒm size range, which accounted for 30-60% of the atmospheric TP load. Wildfire emissions varied widely in P content, and may be related to fire intensity. The estimated dry depositional flux of TP for each daily sampling period ranged between 7 and 118 ÎŒg m−2 d−1, with a mean value of 40 ± 27 ÎŒg m−2 d−1. Relative rates of dry deposition of N and P in the Sierra Nevada are consistent with increasing incidence of N limitation of phytoplankton growth and previously observed long-term eutrophication of lakes
    corecore