32 research outputs found

    Childhood maltreatment and adulthood victimization:An evidence-based model

    Get PDF
    There is ample evidence showing that childhood maltreatment increases two to three fold the risk of victimization in adulthood. Various risk factors, including posttraumatic stress disorder (PTSD) symptoms, dissociation, self-blame, and alcohol abuse are related to revictimization. Although previous research examined associations between risk factors for revictimization, the evidence is limited and the proposed models mostly include a handful of risk factors. Therefore, it is critical to investigate a more comprehensive model explaining the link between childhood maltreatment and adulthood (re)victimization. Accordingly, this study tested a data-driven theoretical path model consisting of 33 variables (and their associations) that could potentially enhance understanding of factors explaining revictimization. Cross-sectional data derived from a multi-wave study were used for this investigation. Participants (N = 2156, age mean = 19.94, SD = 2.89) were first-year female psychology students in the Netherlands and New Zealand, who responded to a battery of questionnaires and performed two computer tasks. The path model created by structural equation modelling using modification indices showed that peritraumatic dissociation, PTSD symptoms, trauma load, loneliness, and drug use were important mediators. Attachment styles, maladaptive schemas, meaning in life, and sex motives connected childhood maltreatment to adulthood victimization via other factors (i.e., PTSD symptoms, risky sex behavior, loneliness, emotion dysregulation, and sex motives). The model indicated that childhood maltreatment was associated with cognitive patterns (e.g., anxious attachment style), which in turn were associated with emotional factors (e.g., emotion dysregulation), and then with behavioral factors (e.g., risky sex behavior) resulting in revictimization. The findings of the study should be interpreted in the light of the limitations. In particular, the cross-sectional design of the study hinders us from ascertaining that the mediators preceded the outcome variable. </p

    Childhood maltreatment and adulthood victimization: An evidence-based model

    Get PDF
    There is ample evidence showing that childhood maltreatment increases two to three fold the risk of victimization in adulthood. Various risk factors, including posttraumatic stress disorder (PTSD) symptoms, dissociation, self-blame, and alcohol abuse are related to revictimization. Although previous research examined associations between risk factors for revictimization, the evidence is limited and the proposed models mostly include a handful of risk factors. Therefore, it is critical to investigate a more comprehensive model explaining the link between childhood maltreatment and adulthood (re)victimization. Accordingly, this study tested a data-driven theoretical path model consisting of 33 variables (and their associations) that could potentially enhance understanding of factors explaining revictimization. Cross-sectional data derived from a multi-wave study were used for this investigation. Participants (N = 2156, age mean = 19.94, SD = 2.89) were first-year female psychology students in the Netherlands and New Zealand, who responded to a battery of questionnaires and performed two computer tasks. The path model created by structural equation modelling using modification indices showed that peritraumatic dissociation, PTSD symptoms, trauma load, loneliness, and drug use were important mediators. Attachment styles, maladaptive schemas, meaning in life, and sex motives connected childhood maltreatment to adulthood victimization via other factors (i.e., PTSD symptoms, risky sex behavior, loneliness, emotion dysregulation, and sex motives). The model indicated that childhood maltreatment was associated with cognitive patterns (e.g., anxious attachment style), which in turn were associated with emotional factors (e.g., emotion dysregulation), and then with behavioral factors (e.g., risky sex behavior) resulting in revictimization. The findings of the study should be interpreted in the light of the limitations. In particular, the cross-sectional design of the study hinders us from ascertaining that the mediators preceded the outcome variable

    Plasmid-Encoded Proinsulin Preserves C-Peptide While Specifically Reducing Proinsulin-Specific CD8+ T Cells in Type 1 Diabetes

    Get PDF
    In type 1 diabetes (T1D) an intense inflammatory response destroys β cells in the pancreas, where insulin is produced and released. A therapy for T1D that reduces the specific autoimmune response in this disease while leaving the remainder of the immune system intact has long been sought. Proinsulin is a major target of adaptive immunity in T1D. We hypothesized that an engineered DNA plasmid encoding proinsulin (BHT-3021) would preserve β cell function in T1D patients through reduction of insulin-specific T cells. We studied 80 subjects over 18 years of age who were diagnosed with T1D within 5 years. Subjects were randomized 2:1 to receive intramuscular injections of BHT-3021 or BHT-placebo, weekly for 12 weeks, and then monitored for safety and immune responses in a blinded fashion. Four dose levels of BHT-3021 were evaluated: 0.3, 1.0, 3.0, and 6.0 mg. C-peptide served as an exploratory measure of efficacy and safety. Islet-specific CD8+ T cell frequencies were assessed with multimers of monomeric human leukocyte antigen class I molecules loaded with peptides containing pancreatic or unrelated antigens. No serious adverse events related to BHT-3021 occurred. C-peptide levels improved relative to placebo at all doses, most notably at 1 mg at 15 weeks (+19.5% BHT-3021 versus −8.8% BHT-placebo, P < 0.026). Proinsulin-reactive CD8+ T cells, but not T cells against unrelated islet or foreign molecules, declined in the BHT-3021 arm (P < 0.006). Thus, we demonstrate that a plasmid encoding proinsulin reduces the frequency of CD8+ T cells reactive to proinsulin while preserving C-peptide over the course of dosing

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers

    The fate of U1 snRNP during anti-Fas induced apoptosis: specific cleavage of the U1 snRNA molecule.

    No full text
    Item does not contain fulltextDuring apoptosis, the U1-70K protein, a component of the spliceosomal U1 snRNP complex, is specifically cleaved by the enzyme caspase-3, converting it into a C-terminally truncated 40-kDa fragment. In this study, we show that the 40-kDa U1-70K fragment is still associated with the complete U1 snRNP complex, and that no obvious modifications occur with the U1 snRNP associated proteins U1A, U1C and Sm-B/B'. Furthermore, it is described for the first time that the U1 snRNA molecule, which is the backbone of the U1 snRNP complex, is modified during apoptosis by the specific removal of the first 5 - 6 nucleotides including the 2,2, 7-trimethylguanosine (TMG) cap. The observations that U1 snRNA cleavage is very specific (no such modifications were detected for the other U snRNAs tested) and that U1 snRNA cleavage is markedly inhibited in the presence of caspase inhibitors, indicate that an apoptotically activated ribonuclease is responsible for the specific modification of U1 snRNA during apoptosis

    The La (SS-B) autoantigen, a key protein in RNA biogenesis, is dephosphorylated and cleaved early during apoptosis.

    No full text
    Item does not contain fulltextIn the past few years, a role for apoptotic processes in the development of autoimmune diseases has been suggested. An increasing number of cellular proteins, which are modified during apoptosis, has been described, and many of these proteins have been identified as autoantigens. We have studied the effects of apoptosis on the La protein in more detail and for the first time demonstrate that this autoantigen is rapidly dephosphorylated after the induction of apoptosis. Dephosphorylation of the La protein was observed after induction of apoptosis by several initiators and in various cell types. Furthermore, we demonstrate that at least a subset of the La protein is proteolytically cleaved in vivo, generating a 45 kDa fragment. Dephosphorylation as well as cleavage of La is inhibited by ZnSO4 as well as by several tetrapeptide caspase inhibitors, indicating that these processes require the activation of caspases. Dephosphorylation of La is inhibited by low concentrations of okadaic acid, suggesting that a PP2A-like phosphatase is involved. Generation of the 45 kDa fragment is consistent with proteolytic cleavage at amino acids 371 and/or 374. The possible significance of the apoptotic changes in the La protein for autoantibody production is discussed
    corecore